[Stereotactic irradiation (Linac) for brain tumors]. 2005

Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
Department of Radiology, Hokkaido University Hospital.

UI MeSH Term Description Entries
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation

Related Publications

Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
January 2002, Radiation medicine,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
September 2005, Nihon rinsho. Japanese journal of clinical medicine,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
October 1999, Physics in medicine and biology,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
May 2003, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
January 1981, Cancer treatment reports,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
September 2022, Radiation oncology (London, England),
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
October 2011, Clinical oncology (Royal College of Radiologists (Great Britain)),
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
September 1996, No shinkei geka. Neurological surgery,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
March 2021, Magyar onkologia,
Hiroki Shirato, and Hidefumi Aoyama, and Keishiro Suzuki, and Kazuo Miyasaka
October 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Copied contents to your clipboard!