Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding. 2006

Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
Canadian Blood Services, Research and Development Department, University of British Columbia/Centre for Blood Research, Department of Pathology and Laboratory Medicine, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.

The HSV1 (herpes simplex virus type 1) surface has been shown recently to initiate blood coagulation by FVIIa (activated Factor VII)-dependent proteolytic activation of FX (Factor X). At least two types of direct FX-HSV1 interactions were suggested by observing that host cell-encoded tissue factor and virus-encoded gC (glycoprotein C) independently enhance FVIIa function on the virus. Using differential sedimentation to separate bound from free 125I-ligand, we report in the present study that, in the presence of Ca2+, FX binds directly to purified wild-type HSV1 with an apparent dissociation constant (K(d)) of 1.5+/-0.4 muM and 206+/-24 sites per virus at saturation. The number of FX-binding sites on gC-deficient virus was reduced to 43+/-5, and the remaining binding had a lower K(d) (0.7+/-0.2 microM), demonstrating an involvement of gC. Engineering gC back into the deficient strain or addition of a truncated soluble recombinant form of gC (sgC), increased the K(d) and the number of binding sites. Consistent with a gC/FX stoichiometry of approximately 1:1, 121+/-6 125I-sgC molecules were found to bind per wild-type HSV1. In the absence of Ca2+, the number of FX-binding sites on the wild-type virus was similar to the gC-deficient strain in the presence of Ca2+. Furthermore, in the absence of Ca2+, direct sgC binding to HSV1 was insignificant, although sgC was observed to inhibit the FX-virus association, suggesting a Ca2+-independent solution-phase FX-sgC interaction. Cumulatively, these data demonstrate that gC constitutes one type of direct FX-HSV1 interaction, possibly providing a molecular basis for clinical correlations between recurrent infection and vascular pathology.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer

Related Publications

Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
November 2004, Thrombosis and haemostasis,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
June 2020, Journal of thrombosis and haemostasis : JTH,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
September 1983, Journal of virology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
March 1993, Journal of virology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
January 2003, Viral immunology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
October 1984, Journal of virology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
October 1989, The Journal of general virology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
April 1983, Infection and immunity,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
October 1985, Journal of virology,
Joel R Livingston, and Michael R Sutherland, and Harvey M Friedman, and Edward L G Pryzdial
May 1990, Journal of virology,
Copied contents to your clipboard!