The role of endocytosis in renal dopamine D1 receptor signaling. 2006

Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
Department of Woman and Child Health, Pediatric Unit, Astrid Lindgren Children's Hospital, Karolinska Institute, 17176 Stockholm, Sweden.

Desensitization of G-protein-coupled receptors (GPCR) includes receptor endocytosis. This phenomenon is suggested, at least for some receptors, to be associated with receptor resensitization. Here, we examined the role of receptor endocytosis for two different GPCR, the dopamine-1 (D1) receptor and the beta1-adrenoceptor (beta(1)-AR) in renal tissue. The functional role of receptor endocytosis was examined on Na+, K+ -ATPase activity in microdissected proximal tubules from rat kidney. The spatial regulation of endogenous D1 receptors and beta(1)-AR was examined by confocal microscopy techniques in LLCPK cells. Phenylarsine oxide (PAO) an endocytosis inhibitor, attenuated isoproterenol-induced decrease in Na+, K+ -ATPase activity but had no such effect on dopamine-induced decrease in Na+, K+ -ATPase activity. We have previously shown that isoproterenol sensitizes the renal dopamine system, by recruiting silent D1 receptors from the interior of the cell towards the plasma membrane. This effect was attenuated by PAO as well as by cytochalasin D while these substances had no effect on dopamine-induced D1 receptor recruitment. The beta(1)-AR was localized to the plasma membrane in control cells. Isoproterenol induced a rapid internalization of the beta(1)-AR; which was prevented by PAO. The results suggest that endocytosis of beta(1)-AR in renal proximal tubular cells is an important step in signal generation, while endocytosis of proximal tubular D1 receptor is not.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001152 Arsenicals Inorganic or organic compounds that contain arsenic. Arsenic Compounds,Compounds, Arsenic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
April 2025, Biochemistry,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
April 2024, bioRxiv : the preprint server for biology,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
January 2021, Frontiers in cellular neuroscience,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
October 2014, The Journal of pharmacology and experimental therapeutics,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
August 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
January 2005, Annals of neurology,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
May 2007, The Journal of biological chemistry,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
February 1998, Clinical and experimental hypertension (New York, N.Y. : 1993),
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
December 2009, American journal of physiology. Renal physiology,
Hjalmar Brismar, and Xiang Hua, and Shinsuke Adachi, and Ulla Holtbäck
July 2014, Biological psychiatry,
Copied contents to your clipboard!