Regulation of glutamine metabolism in dog kidney cortex: effect of pH and chronic acidosis. 1992

A C Schoolwerth, and B C Smith, and K Drewnowska
Department of Internal Medicine, Medical College of Virginia, Richmond 23298.

To examine the interrelationships of proton compartmentation and ammoniagenesis, experiments were performed in tubules and mitochondria isolated from dog kidney cortex. Tubules were incubated in Krebs-Henseleit buffer at different pH (pHe), and cytosolic pH (pHi) was estimated with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Mitochondrial pH (pHm) was determined simultaneously in intact tubules by use of dimethyloxazolidine-2,4-dione. Over the pHe range 6.9-7.7, pHi was similar in control and acidotic dogs and linearly related to pHe. At pHe 7.4 in control tubules. pHm was 7.78 +/- 0.07, and varied little over the pHe range of 7.0-7.7. The pH gradient across the mitochondrial membrane rose at acid pHe. pHm was more alkaline when estimated in tubules from acidotic dogs compared with controls. Ammonium and glucose productions from glutamine were inversely related to pHe and pHi in tubules from both control and acidotic animals and were higher in acidosis. In contrast, ammonium production by isolated mitochondria did not vary as pHe was altered. Enzyme fluxes, calculated from metabolite changes, demonstrated that glutamate dehydrogenase (GDH) flux was altered. Enzyme fluxes, calculated from metabolite changes, demonstrated that glutamate dehydrogenase (GDH) flux was inversely and glutaminase (PDG) flux was linearly related to pHe. Ammonium production was significantly greater in mitochondria from acidotic dogs because of accelerated flux through PDG but not GDH. The present study demonstrates significant difference between proton compartmentation and regulation of ammoniagenesis in kidneys from acidotic dog compared with rat.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses

Related Publications

A C Schoolwerth, and B C Smith, and K Drewnowska
January 1985, Contributions to nephrology,
A C Schoolwerth, and B C Smith, and K Drewnowska
January 1986, Kidney international,
A C Schoolwerth, and B C Smith, and K Drewnowska
September 1981, Kidney international,
A C Schoolwerth, and B C Smith, and K Drewnowska
November 1985, The American journal of physiology,
A C Schoolwerth, and B C Smith, and K Drewnowska
August 1972, The Journal of clinical investigation,
A C Schoolwerth, and B C Smith, and K Drewnowska
June 1971, The American journal of physiology,
A C Schoolwerth, and B C Smith, and K Drewnowska
February 1983, The Biochemical journal,
A C Schoolwerth, and B C Smith, and K Drewnowska
December 1973, The American journal of physiology,
A C Schoolwerth, and B C Smith, and K Drewnowska
March 1972, The Journal of clinical investigation,
A C Schoolwerth, and B C Smith, and K Drewnowska
August 1980, The Journal of biological chemistry,
Copied contents to your clipboard!