Sensory control of extraocular muscles. 2006

J A Büttner-Ennever, and K Z Konakci, and R Blumer
Institute of Anatomy, Ludwig-Maximilian University of Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany. jean.buettner-ennever@med.uni-muenchen.de

The role of sensory receptors in eye muscles is not well understood, but there is physiological and clinical evidence for the presence of proprioceptive signals in many areas of the central nervous system. It is unclear which structures generate these sensory signals, and which central neural pathways are involved. Three different types of receptors are associated with eye muscles: (1) muscle spindles, (2) palisade endings, and (3) Golgi tendon organs, but their occurrence varies wildly between species. A review of their organization shows that each receptor is mainly confined to a morphologically separate layer of the eye muscle. The palisade endings - which are unique to eye muscles, are associated with the global layer; and they have been found in all mammals studied so far. Their function is unknown. The muscle spindles, if they are present in a species, lie in the orbital layer, or at its junction to the global layer. Golgi tendon organs appear to be unique to artiodactyls (i.e., sheep and goats, etc.); they lie in an outer distal marginal layer of the eye muscle, called the "peripheral patch layer" in sheep. The specific association between palisade endings and the multiply innervated type of muscle fibers of the global layer has led to the hypothesis that together they may act as a sensory receptor, and provide a source of central proprioceptive signals. But other interpretations of the morphological evidence do not support this role.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J A Büttner-Ennever, and K Z Konakci, and R Blumer
October 1988, Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de l'agression,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
October 2003, Annals of the New York Academy of Sciences,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
February 1975, American journal of ophthalmology,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
January 1948, Revista oto-neuro-oftalmologica y cirugia neurologica sudamericana,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
June 1967, Investigative ophthalmology,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
June 2006, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
January 1985, Neurology,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
January 2024, Experimental physiology,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
September 1968, Nippon Ganka Gakkai zasshi,
J A Büttner-Ennever, and K Z Konakci, and R Blumer
January 1966, Antioquia medica,
Copied contents to your clipboard!