In vitro evaluation of E1077, a new cephalosporin with a broad antibacterial spectrum. 1992

N Watanabe, and R Hiruma, and K Katsu
Department of Microbiology and Infectious Diseases, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, Japan.

E1077 is a novel parenteral cephalosporin with a wide spectrum of potent antibacterial activity against aerobic and anaerobic gram-positive and gram-negative bacteria. Against methicillin-susceptible Staphylococcus aureus, E1077 was twice as active as cefpirome, with an MIC for 90% of strains tested (MIC90) of 0.78 micrograms/ml. Methicillin-resistant S. aureus was moderately to highly resistant to E1077, but E1077 was at least twice as active as other beta-lactams tested. Against Enterococcus faecalis, E1077 was the most active of the cephalosporins tested (MIC90, 12.5 micrograms/ml) and was at least fourfold more active than cefpirome and ceftazidime. At concentrations of less than or equal to 0.78 micrograms/ml, E1077 inhibited 90% of streptococci and most of the members of the family Enterobacteriaceae tested, with the exceptions of Serratia marcescens and Proteus vulgaris, for which the MIC90s of E1077 were both 3.13 micrograms/ml. Against Pseudomonas aeruginosa, E1077 was two- to fourfold more active than cefpirome and ceftazidime. For the anaerobes, E1077 was as active against Bacteroides fragilis as was cefuzonam, and its activity was fourfold higher than those of cefpirome and ceftazidime. E1077 was at least as resistant as cefpirome to hydrolysis by various beta-lactamases, and these enzymes had a low affinity for E1077.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002511 Cephalosporins A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid. Antibiotics, Cephalosporin,Cephalosporanic Acid,Cephalosporin,Cephalosporin Antibiotic,Cephalosporanic Acids,Acid, Cephalosporanic,Acids, Cephalosporanic,Antibiotic, Cephalosporin,Cephalosporin Antibiotics
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D006094 Gram-Positive Bacteria Bacteria which retain the crystal violet stain when treated by Gram's method. Gram Positive Bacteria
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases

Related Publications

N Watanabe, and R Hiruma, and K Katsu
September 1992, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
February 1983, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
January 1983, Arzneimittel-Forschung,
N Watanabe, and R Hiruma, and K Katsu
October 1978, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
January 1993, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
September 1976, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
February 1993, The Journal of antibiotics,
N Watanabe, and R Hiruma, and K Katsu
April 1985, Antimicrobial agents and chemotherapy,
N Watanabe, and R Hiruma, and K Katsu
January 1993, The Journal of antibiotics,
N Watanabe, and R Hiruma, and K Katsu
July 1992, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!