Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron. 1992

D B Johnson, and M A Ghauri, and M F Said
School of Biological Sciences, University of Wales, Bangor, Gwynedd, United Kingdom.

A heterotrophic bacterium, isolated from an acidic stream in a disused pyrite mine which contained copious growths of "acid streamers," displayed characteristics which differentiated it from previously described mesophilic acidophiles. The isolate was obligately acidophilic, with a pH range of 2.0 to 4.4 and an optimum pH of 3.0. The bacterium was unable to fix carbon dioxide but oxidized ferrous iron, although at a slower rate than either Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Elemental sulfur and manganese(II) were not oxidized. In liquid media, the isolate produced macroscopic streamerlike growths. Microscopic examination revealed that the bacterium formed long (greater than 100 microns) filaments which tended to disintegrate during later growth stages, producing single, motile cells and small filaments. The isolate did not appear to utilize the energy from ferrous iron oxidation. Both iron (ferrous or ferric) and an organic substrate were necessary to promote growth. The isolate displayed a lower tolerance to heavy metals than other iron-oxidizing acidophiles, and growth was inhibited by exposure to light. There was evidence of extracellular sheath production by the isolate. In this and some other respects, the isolate resembles members of the Sphaerotilus-Leptothrix group of filamentous bacteria. The guanine-plus-cytosine content of the isolate was 62 mol%, which is less than that recorded for Sphaerotilus-Leptothrix spp. and greater than those of L. ferrooxidans and most T. ferrooxidans isolates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006088 Gram-Negative Aerobic Bacteria A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine. Achromatiaceae,Achromatium,Achromobacteriaceae,Gram Negative Aerobic Bacteria
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013855 Thiobacillus A genus of gram-negative, rod-shaped bacteria that derives energy from the oxidation of one or more reduced sulfur compounds. Many former species have been reclassified to other classes of PROTEOBACTERIA. Thiobacillus denitrificans,Thiobacillus thioparus

Related Publications

D B Johnson, and M A Ghauri, and M F Said
November 2007, Bioscience, biotechnology, and biochemistry,
D B Johnson, and M A Ghauri, and M F Said
May 2011, Extremophiles : life under extreme conditions,
D B Johnson, and M A Ghauri, and M F Said
May 2013, Huan jing ke xue= Huanjing kexue,
D B Johnson, and M A Ghauri, and M F Said
April 1989, Biochemical and biophysical research communications,
D B Johnson, and M A Ghauri, and M F Said
February 1999, Applied and environmental microbiology,
D B Johnson, and M A Ghauri, and M F Said
December 1975, Applied microbiology,
Copied contents to your clipboard!