Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. 1992

F Archibald, and B Roy
Pulp and Paper Research Institute of Canada, Pointe Claire, Quebec.

Many ligninolytic basidiomycete fungi have been shown to secrete a group of peroxidase isozymes whose sole function appears to be the peroxide-dependent oxidation of manganous [Mn(II)] to manganic [Mn(III)] ions. Manganic chelates and these Mn peroxidases have been implicated as central to the degradation of various natural and synthetic lignins and lignin-containing effluents by white rot (ligninolytic) fungi. Another group of enzymes, the laccases, are commonly secreted by wood-rotting fungi, but are generally regarded as being able to oxidize (and usually polymerize) only phenolic substrates. In this report it is shown that in the presence of appropriate oxidizable phenolic accessory substances or primary substrates, a variety of laccases and peroxidases catalyzing one-electron oxidations can also produce Mn(III) chelates from Mn(II).

UI MeSH Term Description Entries
D008031 Lignin The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed) Lignins
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011124 Polyporaceae A family of bracket fungi, order POLYPORALES, living in decaying plant matter and timber.
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D042845 Laccase A copper-containing oxidoreductase enzyme that catalyzes the oxidation of 4-benzenediol to 4-benzosemiquinone. It also has activity towards a variety of O-quinols and P-quinols. It primarily found in FUNGI and is involved in LIGNIN degradation, pigment biosynthesis and detoxification of lignin-derived products. Laccase B,Laccase I,Laccase II,Laccase III,Urishiol Oxidase,p-Diphenol Oxidase,Oxidase, Urishiol,Oxidase, p-Diphenol,p Diphenol Oxidase

Related Publications

F Archibald, and B Roy
January 2013, Ultrasonics sonochemistry,
F Archibald, and B Roy
February 2007, Canadian journal of microbiology,
F Archibald, and B Roy
November 2001, Applied microbiology and biotechnology,
F Archibald, and B Roy
August 1994, Biochimica et biophysica acta,
F Archibald, and B Roy
December 2005, Journal of microbiology (Seoul, Korea),
F Archibald, and B Roy
July 2016, Bioprocess and biosystems engineering,
F Archibald, and B Roy
September 2012, Applied biochemistry and biotechnology,
F Archibald, and B Roy
November 2009, Bioresource technology,
Copied contents to your clipboard!