Ceramide-enriched membrane domains. 2005

Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.

Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013108 Sphingomyelin Phosphodiesterase An enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide (N-acylsphingosine) plus choline phosphate. A defect in this enzyme leads to NIEMANN-PICK DISEASE. EC 3.1.4.12. Sphingomyelin Cholinephosphohydrolase,Sphingomyelin Cleaving Enzyme,Sphingomyelinase,Sphingomyelinase C
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018406 Virus Physiological Phenomena Biological properties, processes, and activities of VIRUSES, including the interactions with the cells they infect. Viral Physiological Processes,Viral Physiology,Virus Physiological Processes,Physiology, Viral,Viral Physiological Concepts,Viral Physiological Phenomena,Viral Physiological Process,Virus Physiological Concepts,Virus Physiological Phenomenon,Virus Physiological Process,Virus Physiology,Concept, Viral Physiological,Concept, Virus Physiological,Concepts, Viral Physiological,Concepts, Virus Physiological,Phenomena, Viral Physiological,Phenomena, Virus Physiological,Phenomenon, Virus Physiological,Phenomenons, Virus Physiological,Physiological Process, Viral,Physiological Process, Virus,Physiological Processes, Viral,Physiological Processes, Virus,Physiology, Virus,Process, Viral Physiological,Process, Virus Physiological,Processes, Viral Physiological,Processes, Virus Physiological,Viral Physiological Concept,Virus Physiological Concept
D018407 Bacterial Physiological Phenomena Physiological processes and properties of BACTERIA. Bacterial Physiology,Bacterial Processes,Bacterial Physiological Concepts,Bacterial Physiological Phenomenon,Bacterial Process,Physiology, Bacterial,Bacterial Physiological Concept,Concept, Bacterial Physiological,Concepts, Bacterial Physiological,Phenomena, Bacterial Physiological,Phenomenon, Bacterial Physiological,Process, Bacterial,Processes, Bacterial

Related Publications

Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
January 2009, Biochimica et biophysica acta,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
January 2007, Progress in lipid research,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
January 2021, Methods in molecular biology (Clifton, N.J.),
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
January 2008, Sub-cellular biochemistry,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
February 2006, Biophysical journal,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
November 2009, Langmuir : the ACS journal of surfaces and colloids,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
October 2008, Biochemistry,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
July 2005, The Journal of biological chemistry,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
August 2007, Apoptosis : an international journal on programmed cell death,
Claudia R Bollinger, and Volker Teichgräber, and Erich Gulbins
September 2020, International journal of molecular sciences,
Copied contents to your clipboard!