| D010944 |
Plants |
Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. |
Plant |
|
| D006003 |
Glycogen |
|
|
|
| D006025 |
Glycosaminoglycans |
Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). |
Glycosaminoglycan,Mucopolysaccharides |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D014531 |
Uridine Diphosphate Galactose |
A nucleoside diphosphate sugar which can be epimerized into UDPglucose for entry into the mainstream of carbohydrate metabolism. Serves as a source of galactose in the synthesis of lipopolysaccharides, cerebrosides, and lactose. |
UDP Galactose,UDPGal,Uridine Diphosphogalactose,Uridine Pyrophosphogalactose,Diphosphate Galactose, Uridine,Diphosphogalactose, Uridine,Galactose, UDP,Galactose, Uridine Diphosphate,Pyrophosphogalactose, Uridine |
|
| D014532 |
Uridine Diphosphate Glucose |
A key intermediate in carbohydrate metabolism. Serves as a precursor of glycogen, can be metabolized into UDPgalactose and UDPglucuronic acid which can then be incorporated into polysaccharides as galactose and glucuronic acid. Also serves as a precursor of sucrose lipopolysaccharides, and glycosphingolipids. |
UDP Glucose,UDPG,Uridine Diphosphoglucose,Diphosphate Glucose, Uridine,Diphosphoglucose, Uridine,Glucose, UDP,Glucose, Uridine Diphosphate |
|
| D014535 |
Uridine Diphosphate Glucuronic Acid |
A nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP iduronic acid, which donates iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. |
UDP Glucuronic Acid,UDPGA,Uridine Diphosphoglucuronic Acid,Acid, UDP Glucuronic,Acid, Uridine Diphosphoglucuronic,Diphosphoglucuronic Acid, Uridine,Glucuronic Acid, UDP |
|
| D014539 |
Uridine Diphosphate Sugars |
Nucleotide-sugars such as uridine-diphosphate glucose or UDP-glucose. |
UDP Sugars,Diphosphate Sugars, Uridine,Sugars, UDP,Sugars, Uridine Diphosphate |
|
| D046911 |
Macromolecular Substances |
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. |
Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular |
|