Sex differences in neurochemical effects of dopaminergic drugs in rat striatum. 2006

Q David Walker, and Rupa Ray, and Cynthia M Kuhn
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.

Previous data indicate that dopamine neurotransmission is differently regulated in male and female rats. The purpose of the present study was to investigate the dopamine transporter and autoreceptor as potential loci responsible for this sex difference. Fast cyclic voltammetry at carbon-fiber microelectrodes was used to monitor changes in electrically evoked levels of extracellular dopamine in the striata of anesthetized male and female rats before and after administration of an uptake inhibitor, a dopamine D2 antagonist, or a D3/D2 agonist. Administration of 40 mg/kg cocaine ip increased electrically-evoked extracellular dopamine concentrations in both sexes, but to a significantly greater extent in female striatum at the higher stimulation frequencies. The typical antipsychotic, haloperidol, increased dopamine efflux in both sexes but the effect was twice as large in the female striatum. The D3/D2 agonist quinpirole induced an unexpected, transient increase in dopamine efflux following high-frequency stimulation only in females, and evoked dopamine was higher in females across this entire time course. More detailed analysis of cocaine effects revealed no fundamental sex differences in the interaction of cocaine with DAT in vivo or in synaptosomes. These results indicate that nigrostriatal dopamine neurotransmission in the female rat is more tightly regulated by autoreceptor and transporter mechanisms, perhaps related by greater autoreceptor control of DAT activity. Thus, baseline sex differences in striatal dopamine regulation induce different pharmacologic responses. These results contribute to understanding sex differences in stimulant-induced locomotor activity in rats and may have broader implications for neurologic disorders and their pharmacotherapies in humans.

UI MeSH Term Description Entries
D008297 Male Males
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005260 Female Females
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol

Related Publications

Q David Walker, and Rupa Ray, and Cynthia M Kuhn
September 1976, Journal of neurochemistry,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
September 1992, The Journal of comparative neurology,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
August 2005, Parkinsonism & related disorders,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
August 2022, International journal of molecular sciences,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
June 2002, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
January 1976, Polish journal of pharmacology and pharmacy,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
October 1983, Brain research,
Q David Walker, and Rupa Ray, and Cynthia M Kuhn
March 1976, Molecular pharmacology,
Copied contents to your clipboard!