Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. 2005

N Gardner, and C P Champagne
Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, Canada. gardnern@agr.gc.ca

OBJECTIVE The propionibacteria are commercially important due to their use in the cheese industry, and there is a growing interest for their probiotic effects. Stimulatory effects of lactic acid bacteria (LAB) on propionic acid bacteria have been observed. This study was designed to examine the possibility of using spent media previously used to grow LAB for the production of biomass and metabolites of Propionibacterium freudenreichii subsp. shermanii. RESULTS Seventeen MRS and vegetable juice media were prefermented by various LAB and evaluated for their ability to subsequently support the growth of Propionibacterium, using automated spectrophotometry (AS). Growth of Propionibacterium in spent media was strongly affected by the LAB strain used to produce the spent medium. The native MRS medium (not prefermented) yielded the highest optical density values followed by prefermented media by Lactobacillus acidophilus, Bifidobacterium longum and Lactococcus lactis. Prefermented cabbage juice enabled good growth of Propionibacterium. For the production of organic acids and vitamin B12, cells of Propionibacterium were concentrated and immobilized in alginate beads in the aim of accelerating the bioconversions. More propionic acid was obtained in spent media than in native MRS. The concentration of vitamin B12 was higher in media fermented with free cells than those with immobilized cultures; with the free cells, its concentration varied from 900 to 1800 ng ml(-1) of media. CONCLUSIONS It was demonstrated that spent media could be recycled for the production of Propionibacterium and metabolites, depending on the LAB strain that was previously grown. Media remediation is needed to improve the production of vitamin B12, especially with immobilized cells. CONCLUSIONS This study presents an option for recycling of spent media generated by producers of LAB or producers of fermented vegetables. The propionic fermentation may result in three commercial products: biomass, vitamin B12 or organic acids, which may be used as starters, supplements or food preservatives. It is an attractive process from economical and environmental standpoints.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D011424 Propionibacterium A genus of gram-positive, rod-shaped bacteria whose cells occur singly, in pairs or short chains, in V or Y configurations, or in clumps resembling letters of the Chinese alphabet. Its organisms are found in cheese and dairy products as well as on human skin and can occasionally cause soft tissue infections.
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D014805 Vitamin B 12 A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12. Cobalamin,Cyanocobalamin,Cobalamins,Eritron,Vitamin B12,B 12, Vitamin,B12, Vitamin

Related Publications

N Gardner, and C P Champagne
August 2017, Bioscience, biotechnology, and biochemistry,
N Gardner, and C P Champagne
January 1958, Acta biochimica Polonica,
N Gardner, and C P Champagne
July 1962, Biochemical and biophysical research communications,
N Gardner, and C P Champagne
June 1964, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
N Gardner, and C P Champagne
January 1977, Prikladnaia biokhimiia i mikrobiologiia,
Copied contents to your clipboard!