Differential effects of beta-lactams on human IFN-gamma activity. 2005

Bernadette M Brooks, and C Anthony Hart, and John W Coleman
Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK. spjbmb@btinternet.com

OBJECTIVE To investigate whether a range of beta-lactam antibiotics conjugate to and hence reduce the activity of IFN-gamma, as has been shown for penicillin G. A selection of penicillins, cephalosporins, a monobactam (aztreonam), a beta-lactamase inhibitor (clavulanic acid), a carbapenem (meropenem) and the non-beta-lactam penicillin derivative d-penicillamine were tested for their effect on IFN-gamma activity. METHODS Following exposure to a range of concentrations of these compounds, for varying lengths of time, IFN-gamma activity was assayed by induction of CD54 on the surface of the lung epithelial cell line A549, utilizing an ELISA. RESULTS Clavulanic acid, cefoxitin and cefaloridine were the most potent inhibitors of IFN-gamma activity, followed by cefotaxime, ceftriaxone and phenoxymethylpenicillin. Ampicillin was less inhibitory than penicillin G, whilst meropenem and aztreonam had the least effect and d-penicillamine had no effect. The modulatory effect of these compounds was not due to a direct effect on CD54 induction. Unlike freshly prepared drugs, aged preparations of penicillin G and clavulanic acid had no significant effect on IFN-gamma activity. CONCLUSIONS beta-Lactams differ in their capacity to modulate human IFN-gamma activity. This finding may have implications for the immunomodulatory effects of beta-lactams and for the design both of beta-lactams that do not affect the immune system and those which may be used therapeutically to target cytokine action.

UI MeSH Term Description Entries
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D010400 Penicillin G A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission. Benzylpenicillin,Benpen,Benzylpenicillin Potassium,Coliriocilina,Crystapen,Or-pen,Parcillin,Pekamin,Pengesod,Penibiot,Penicilina G Llorente,Penicillin G Jenapharm,Penicillin G Potassium,Penicillin G Sodium,Penicillin GrĂ¼nenthal,Penilevel,Peniroger,Pfizerpen,Sodiopen,Sodipen,Sodium Benzylpenicillin,Sodium Penicillin,Unicilina,Ursopen,Van-Pen-G
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D047090 beta-Lactams Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. beta-Lactam,4-Thia-1-Azabicyclo(3.2.0)Heptanes,4-Thia-1-Azabicyclo(4.2.0)Octanes,beta Lactam,beta Lactams
D018799 Intercellular Adhesion Molecule-1 A cell-surface ligand involved in leukocyte adhesion and inflammation. Its production is induced by gamma-interferon and it is required for neutrophil migration into inflamed tissue. Antigens, CD54,CD54 Antigens,ICAM-1,CD54 Antigen,Antigen, CD54,Intercellular Adhesion Molecule 1

Related Publications

Bernadette M Brooks, and C Anthony Hart, and John W Coleman
September 1998, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
May 1974, Journal of medicinal chemistry,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
December 1989, European journal of biochemistry,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
July 1989, Journal of chemotherapy (Florence, Italy),
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
July 1999, The European respiratory journal,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
April 1986, Gan to kagaku ryoho. Cancer & chemotherapy,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
October 2005, The Journal of organic chemistry,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
April 1996, Multiple sclerosis (Houndmills, Basingstoke, England),
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
January 1989, Journal of biological regulators and homeostatic agents,
Bernadette M Brooks, and C Anthony Hart, and John W Coleman
July 1987, No to shinkei = Brain and nerve,
Copied contents to your clipboard!