Dexamethasone ameliorates retinal photic injury in albino rats. 1992

J Fu, and T T Lam, and M O Tso
Georgiana Dvorak Theobald Ophthalmic Pathology Laboratory, Department of Ophthalmology and Visual Sciences, UIC Eye Center, Lions of Illinois Eye Research Institute, University of Illinois, College of Medicine 60612.

The effect of dexamethasone in two regimens on retinal photic injury was studied in Lewis albino rats that were exposed to 24 hr of continuous green fluorescent light. Under regimen 1, dexamethasone was given at a daily dosage of 1 mg kg-1 for 8 days, starting 6 days before light exposure. Under regimen 2, dexamethasone was given at the same daily dosage for 3 days, started 1 day before light exposure. Pathologic study of the light-exposed retina, morphometric evaluation of the photoreceptor cell loss, cell counts of the macrophages in the subretinal space, and measurements of rhodopsin levels were undertaken in the dexamethasone-treated and control retinas at various times. The administration of dexamethasone in both regimens did not produce pathologic changes in the retina before light exposure, but rhodopsin levels were significantly lowered in both treated groups when compared to corresponding vehicle treated control animals. Under regimen 1, at 6 hr after light exposure, both the treated and the control groups showed comparable loss of photoreceptor cells, degeneration of the photoreceptor elements and retinal pigment epithelium, but a significantly lowered level of rhodopsin in the treated group was noted. At 6 days after exposure, the outer nuclear layer thickness, and the outer and inner segments showed significant preservation in the treated group. Also in the treated group, the number of macrophages was significantly reduced and the retinal pigment epithelial (RPE) vacuolation was markedly less. However, there was no difference in rhodopsin levels. At 14 days after exposure, the outer nuclear layer thickness and rhodopsin levels of the treated rats had significantly higher values than the controls. Under regimen 2, however, at 6 days after exposure, an ameliorative effect in the RPE was observed but there were no differences of rhodopsin levels, the outer nuclear thickness and number of macrophages between the treated and control groups. Regimen 1 was associated with a significantly higher retinal level of dexamethasone when compared with regimen 2. The ameliorative effect of dexamethasone on rat retinal photic injury may be through inhibition of lipid peroxidation, in which a high retinal level of the steroid is required.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011833 Radiation Injuries, Experimental Experimentally produced harmful effects of ionizing or non-ionizing RADIATION in CHORDATA animals. Experimental Radiation Injuries,Injuries, Experimental Radiation,Experimental Radiation Injury,Radiation Injury, Experimental
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Fu, and T T Lam, and M O Tso
February 1991, Current eye research,
J Fu, and T T Lam, and M O Tso
December 1990, Archives of ophthalmology (Chicago, Ill. : 1960),
J Fu, and T T Lam, and M O Tso
August 1990, Current eye research,
J Fu, and T T Lam, and M O Tso
January 2006, Visual neuroscience,
J Fu, and T T Lam, and M O Tso
March 2000, Nippon Ganka Gakkai zasshi,
J Fu, and T T Lam, and M O Tso
July 1981, American journal of optometry and physiological optics,
J Fu, and T T Lam, and M O Tso
April 1976, Indian journal of ophthalmology,
J Fu, and T T Lam, and M O Tso
January 1991, American journal of ophthalmology,
J Fu, and T T Lam, and M O Tso
January 1987, Transactions of the American Ophthalmological Society,
J Fu, and T T Lam, and M O Tso
November 2016, JPMA. The Journal of the Pakistan Medical Association,
Copied contents to your clipboard!