Synthesis and properties of PNA oligomers containing orotic acid derivatives. 2005

R H E Hudson, and F Wojciechowski
Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada.

We have investigated the incorporation of C6-derivatives of uracil into polypyrimidine peptide nucleic acid oligomers (PNA). Starting with orotic acid (uracil-6-carboxylic acid) we have prepared a PNA monomer containing the methyl orotate nucleobase which is compatible with Fmoc-based synthesis. Treatment of the resin-bound oligomers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing PNA. Alternatively, the methyl orotate-containing PNA was liberated from the resin by standard acidolysis. PNA bearing a modified nucleobase was found to hybridize to both poly(rA) and poly(dA). Complexes with poly(rA) were more stable than those with poly(dA) but both were destabilized relative to an unmodified PNA. Modification of a terminal residue was tolerated better than modification of an internal position. The type of charge provided by the modification affected the complex stability. In the worst case, an internal modification was nearly as detrimental as a base mismatch.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009963 Orotic Acid An intermediate product in PYRIMIDINE synthesis which plays a role in chemical conversions between DIHYDROFOLATE and TETRAHYDROFOLATE. Potassium Orotate,Sodium Orotate,Zinc Orotate,Acid, Orotic,Orotate, Potassium,Orotate, Sodium,Orotate, Zinc
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

R H E Hudson, and F Wojciechowski
September 1996, Nucleic acids research,
R H E Hudson, and F Wojciechowski
July 2013, Molecules (Basel, Switzerland),
R H E Hudson, and F Wojciechowski
February 2008, The Journal of organic chemistry,
R H E Hudson, and F Wojciechowski
July 1999, Chemical research in toxicology,
R H E Hudson, and F Wojciechowski
January 2002, Methods in molecular biology (Clifton, N.J.),
R H E Hudson, and F Wojciechowski
October 1967, Bollettino chimico farmaceutico,
R H E Hudson, and F Wojciechowski
November 2014, Tetrahedron letters,
R H E Hudson, and F Wojciechowski
August 2013, Tetrahedron letters,
Copied contents to your clipboard!