Cholinergic inhibition of neocortical pyramidal neurons. 2005

Allan T Gulledge, and Greg J Stuart
Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia. allan@nips.ac.jp

Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the output of neocortical pyramidal neurons.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron
D018721 Muscarinic Agonists Drugs that bind to and activate muscarinic cholinergic receptors (RECEPTORS, MUSCARINIC). Muscarinic agonists are most commonly used when it is desirable to increase smooth muscle tone, especially in the GI tract, urinary bladder and the eye. They may also be used to reduce heart rate. Cholinergic Agonists, Muscarinic,Cholinergic Agonist, Muscarinic,Cholinergic Muscarinic Agonists,Muscarinic Agonist,Agonist, Muscarinic,Agonist, Muscarinic Cholinergic,Agonists, Cholinergic Muscarinic,Agonists, Muscarinic,Agonists, Muscarinic Cholinergic,Muscarinic Agonists, Cholinergic,Muscarinic Cholinergic Agonist,Muscarinic Cholinergic Agonists
D019579 Neocortex The largest portion of the CEREBRAL CORTEX in which the NEURONS are arranged in six layers in the mammalian brain: molecular, external granular, external pyramidal, internal granular, internal pyramidal and multiform layers. Cerebral Neocortex,External Granular Layer,Isocortex,Neocortical External Granular Layer,Neocortical External Pyramidal Layer,Neocortical Internal Granular Layer,Neocortical Internal Pyramidal Layer,Neocortical Molecular Layer,Neocortical Multiform Layer,Neopallial Cortex,Neopallium,Substantia Corticalis,Cerebral Neocortices,Cortex, Neopallial,Corticali, Substantia,Corticalis, Substantia,Cortices, Neopallial,External Granular Layers,Granular Layer, External,Granular Layers, External,Isocortices,Layer, External Granular,Layer, Neocortical Molecular,Layer, Neocortical Multiform,Layers, External Granular,Layers, Neocortical Molecular,Layers, Neocortical Multiform,Molecular Layer, Neocortical,Molecular Layers, Neocortical,Multiform Layer, Neocortical,Multiform Layers, Neocortical,Neocortex, Cerebral,Neocortical Molecular Layers,Neocortical Multiform Layers,Neocortices,Neocortices, Cerebral,Neopallial Cortices,Neopalliums,Substantia Corticali

Related Publications

Allan T Gulledge, and Greg J Stuart
August 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Allan T Gulledge, and Greg J Stuart
March 2002, Cerebral cortex (New York, N.Y. : 1991),
Allan T Gulledge, and Greg J Stuart
February 1999, Nature neuroscience,
Allan T Gulledge, and Greg J Stuart
February 2020, Journal of neuroinflammation,
Allan T Gulledge, and Greg J Stuart
March 1998, Journal of neurophysiology,
Allan T Gulledge, and Greg J Stuart
November 2008, Nature neuroscience,
Allan T Gulledge, and Greg J Stuart
January 2001, Journal of computational neuroscience,
Allan T Gulledge, and Greg J Stuart
March 1977, Lancet (London, England),
Allan T Gulledge, and Greg J Stuart
August 1996, Nature,
Allan T Gulledge, and Greg J Stuart
July 1996, Journal of neurophysiology,
Copied contents to your clipboard!