Correspondence between EEG-fMRI and EEG dipole localisation of interictal discharges in focal epilepsy. 2006

Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
Montreal Neurological Institute, McGill University, Room 786, 3801 University Street, Montréal, QC, Canada H3A 2B4. a.p.bagshaw@bham.ac.uk

EEG-fMRI and EEG dipole source localisation are two non-invasive imaging methods that can be applied to the study of the haemodynamic and electrical consequences of epileptic discharges. Using them in combination has the potential to allow imaging with the spatial resolution of fMRI and the temporal resolution of EEG. However, although considerable data are available concerning their concordance in studies involving event-related potentials (ERPs), less is known about how well they agree in epilepsy. To this end, 17 patients were selected from a database of 57 who had undergone an EEG-fMRI scanning session followed by a separate EEG session outside of the scanner. Spatiotemporal dipole modelling was compared with the peak and closest EEG-fMRI activations and deactivations. On average, the dipoles were 58.5 mm from the voxel with the highest positive t value and 32.5 mm from the nearest activated voxel. For deactivations, the corresponding values were 60.8 and 34.0 mm. These values are considerably higher than is generally observed with ERPs, probably as a result of the relatively widespread field, which can lead to artificially deep dipoles, and the occurrence of EEG-fMRI responses remote from the presumed focus of the epileptic activity. The results suggest that EEG and MEG inverse solutions for equivalent current dipole approaches should not be strongly constrained by EEG-fMRI results in epilepsy, and that the use of distributed source modelling will be a more appropriate way of combining EEG-fMRI results with source localisation techniques.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004828 Epilepsies, Partial Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317) Abdominal Epilepsy,Digestive Epilepsy,Epilepsy, Focal,Epilepsy, Simple Partial,Focal Seizure Disorder,Gelastic Epilepsy,Partial Epilepsy,Partial Seizure Disorder,Seizure Disorder, Partial,Simple Partial Seizures,Amygdalo-Hippocampal Epilepsy,Benign Focal Epilepsy, Childhood,Benign Occipital Epilepsy,Benign Occipital Epilepsy, Childhood,Childhood Benign Focal Epilepsy,Childhood Benign Occipital Epilepsy,Epilepsy, Benign Occipital,Epilepsy, Localization-Related,Epilepsy, Partial,Occipital Lobe Epilepsy,Panayiotopoulos Syndrome,Partial Seizures, Simple, Consciousness Preserved,Rhinencephalic Epilepsy,Seizure Disorder, Focal,Subclinical Seizure,Uncinate Seizures,Abdominal Epilepsies,Amygdalo-Hippocampal Epilepsies,Benign Occipital Epilepsies,Digestive Epilepsies,Disorders, Focal Seizure,Disorders, Partial Seizure,Epilepsies, Abdominal,Epilepsies, Amygdalo-Hippocampal,Epilepsies, Benign Occipital,Epilepsies, Digestive,Epilepsies, Focal,Epilepsies, Gelastic,Epilepsies, Localization-Related,Epilepsies, Occipital Lobe,Epilepsies, Rhinencephalic,Epilepsies, Simple Partial,Epilepsy, Abdominal,Focal Epilepsies,Focal Epilepsy,Focal Seizure Disorders,Gelastic Epilepsies,Lobe Epilepsy, Occipital,Localization-Related Epilepsies,Localization-Related Epilepsy,Occipital Epilepsies, Benign,Occipital Epilepsy, Benign,Occipital Lobe Epilepsies,Partial Epilepsies,Partial Epilepsies, Simple,Partial Seizure Disorders,Partial Seizures, Simple,Rhinencephalic Epilepsies,Seizure Disorders, Focal,Seizure Disorders, Partial,Seizure, Subclinical,Seizure, Uncinate,Seizures, Simple Partial,Seizures, Subclinical,Seizures, Uncinate,Simple Partial Epilepsies,Subclinical Seizures,Uncinate Seizure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
October 2008, Magnetic resonance imaging,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
January 2016, PloS one,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
April 2021, Epilepsy & behavior : E&B,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
August 2007, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
November 2017, Human brain mapping,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
March 2013, NeuroImage,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
March 2014, Epilepsy research,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
July 2016, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
May 2023, Brain : a journal of neurology,
Andrew P Bagshaw, and Eliane Kobayashi, and François Dubeau, and G Bruce Pike, and Jean Gotman
January 2011, NeuroImage,
Copied contents to your clipboard!