Epilepsy, cerebral blood flow, and cerebral metabolic rate. 1992

R Duncan
Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland.

Penfield's observations in the 1930s provided the first systematic evidence of changes in regional cerebral blood flow (rCBF) associated with focal seizures. Further studies in humans and animals confirmed increases in cerebral blood flow and metabolism during generalised seizures, but the interictal, ictal, and postictal changes in focal epilepsy have begun to be elucidated in the last decade with the advent of in vivo imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) and, in the case of animal studies, of autoradiography. Most studies have been of temporal lobe epilepsy. Interictally, the characteristic finding has been reduced blood flow and/or metabolism in the affected temporal lobe, or more extensively in the ipsilateral hemisphere. The few studies to date of ictal or postictal changes have been of rCBF using SPECT. They show hyperperfusion of the whole temporal lobe ictally, hyperperfusion of the hippocampus, combined with hypoperfusion of lateral structures in the immediate postictal period. Later in the postictal period, hypoperfusion alone is seen. Studies of focal seizures in animals have shown hyperperfusion and hypermetabolism at the site of the focus often with widespread depression of both parameters in the ipsilateral neocortex. Limited studies of coupling between blood flow and metabolism in humans have suggested that flow during seizures is adequate for metabolic demand, although some animal studies have suggested localised areas of uncoupling. The results of modern in vivo imaging of ictal and postictal changes in blood flow and metabolism have correlated well with Penfield's observations, and these changes are now being used to help localise epileptic foci, allowing wider use of the surgical treatment he pioneered.

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Duncan
October 1987, The American journal of physiology,
R Duncan
July 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
R Duncan
November 1984, The Journal of clinical investigation,
R Duncan
August 1988, The American journal of physiology,
R Duncan
January 1977, Acta neurologica Scandinavica. Supplementum,
R Duncan
January 1983, Progress in clinical and biological research,
Copied contents to your clipboard!