Deposition and dispersion of aerosols in the airways of the human respiratory tract: the effect of particle size. 1992

G Scheuch, and W Stahlhofen
GSF Forschungszentrum für Umwelt- und Gesundheit, Institut für Biophysikalische Strahlenforschung, Frankfurt/Main, Germany.

Small volumes of aerosols (boluses) were inspired predominantly into the conducting airways of human lungs with a fast operating valve system, injecting preselected aerosol volumes near the end of a clean air inhalation. Particle recovery and bolus dispersion in the exhaled air after various periods of breathholding were investigated by measuring aerosol number concentration directly in front of the mouth with a laser photometer. Inspired and expired flow rates were measured with a pneumotachograph. The effect of particle size on these measurements has been investigated using aerosol particles with aerodynamic diameters (dae) between 0.9 and 5 microns. For aerosol particles smaller than 2 microns, bolus dispersion increases with increasing periods of breathholding (tb). After reaching a maximum, dispersion decreases with even longer tb. An increase in particle size yields a smaller increase in dispersion during the first seconds of breathholding while it is not changed significantly without breathhold. Particle losses during inhalation and exhalation increases with particle size. However, with increasing periods of breathholding, the losses of the smaller particles (less than 1.5 microns) were found to be much higher than expected theoretically, implying particle losses by sedimentation in the same airway structures. The small aerosol particles are deposited in smaller airways than bigger particles. These observations can be explained by cardiogenic mixing during periods of breathholding by pulsatile flow oscillations and confirm measurements with enhanced heart rate as described in an earlier paper. Small particles with restricted settling velocities remained longer in an airborne state in the airways and this leads to a more efficient cardiogenic mixing.

UI MeSH Term Description Entries
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000336 Aerosols Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents. Aerosol

Related Publications

G Scheuch, and W Stahlhofen
January 1969, American Industrial Hygiene Association journal,
G Scheuch, and W Stahlhofen
March 2000, Toxicological sciences : an official journal of the Society of Toxicology,
G Scheuch, and W Stahlhofen
January 1981, Thorax,
G Scheuch, and W Stahlhofen
January 1984, La Medicina del lavoro,
G Scheuch, and W Stahlhofen
September 2021, Journal of aerosol medicine and pulmonary drug delivery,
G Scheuch, and W Stahlhofen
October 2019, Radiation protection dosimetry,
G Scheuch, and W Stahlhofen
January 1983, American Industrial Hygiene Association journal,
G Scheuch, and W Stahlhofen
January 2008, American journal of rhinology,
Copied contents to your clipboard!