The polyanion-binding domain of cytoplasmic Lys-tRNA synthetase from Saccharomyces cerevisiae is not essential for cell viability. 1992

R Martinez, and M Mirande
Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.

Cytoplasmic Lys-tRNA synthetase (LysRS) from Saccharomyces cerevisiae is a dimeric enzyme made up of identical subunits of 68 kDa. By limited proteolysis, this enzyme can be converted to a truncated dimer without loss of activity. Whereas the native enzyme strongly interacts with polyanionic carriers, the modified form displays reduced binding properties. KRS1 is the structural gene for yeast cytoplasmic LysRS. It encodes a polypeptide with an amino-terminal extension composed of about 60-70 amino acid residues, compared to its prokaryotic counterpart. This segment, containing 13 lysine residues, is removed upon proteolytic treatment of the native enzyme. The aim of the present study was to probe in vivo the significance of this amino-terminal extension. We have constructed derivatives of the KRS1 gene, encoding enzymes lacking 58 or 69 amino-terminal residues and, by site-directed mutagenesis, we have changed four or eight lysine residues from the amino-terminal segment of LysRS into glutamic acids. Engineered proteins were expressed in vivo after replacement of the wild-type KRS1 allele. The mutant enzymes displayed reduced specific activities (2-100-fold). A series of carboxy-terminal deletions, encompassing 3, 10 or 15 amino acids, were introduced into the LysRS mutants with modified amino-terminal extensions. The removal of three residues led to a 2-7-fold increase in the specific activity of the mutant enzymes. This partial compensatory effect suggests that interactions between the two extreme regions of yeast LysRS are required for a proper conformation of the native enzyme. All KRS1 derivatives were able to sustain growth of yeast cells, although the mutant cell lines displaying a low LysRS activity grew more slowly. The expression, as single-copy genes, of mutant enzymes with a complete deletion of the amino-terminal extension or with four Lys----Glu mutations, that displayed specific activities close to that of the wild-type LysRS, had no discernable effect on cell growth. We conclude that the polycationic extensions of eukaryotic aminoacyl-tRNA synthetases are dispensable, in vivo, for aminoacylation activities. The results are discussed in relation to the triggering role in in situ compartmentalization of protein synthesis that has been ascribed to the polypeptide-chain extensions that characterize most, if not all, eukaryotic aminoacyl-tRNA synthetases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008250 Lysine-tRNA Ligase An enzyme that activates lysine with its specific transfer RNA. EC 6.1.1.6. Lysyl T RNA Synthetase,Lys-tRNA Ligase,Lysyl-tRNA Synthetase,Ligase, Lys-tRNA,Ligase, Lysine-tRNA,Lys tRNA Ligase,Lysine tRNA Ligase,Lysyl tRNA Synthetase,Synthetase, Lysyl-tRNA
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal

Related Publications

R Martinez, and M Mirande
December 1999, Journal of bacteriology,
R Martinez, and M Mirande
December 2001, Proceedings of the National Academy of Sciences of the United States of America,
R Martinez, and M Mirande
January 1998, The Journal of biological chemistry,
Copied contents to your clipboard!