Reliability of a bioluminescence ATP assay for detection of bacteria. 1992

L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
Istituto di Microbiologia, Facoltà di Farmacia, Università degli Studi La Sapienza, Rome, Italy.

The reliability of bioluminescence assays which employ the luciferin-luciferase ATP-dependent reaction to evaluate bacterial counts was studied, both in vitro and on urine specimens. Bioluminescence and cultural results for the most common urinary tract pathogens were analyzed. Furthermore, the influence of the culture medium, of the assaying method, and of the phase of growth on bioluminescence readings was studied. Results show that Proteus, Providencia, and Morganella strains are not correctly detected, neither in vitro nor in urine samples, by the standard assaying method. The analysis of assaying parameters demonstrated that some modifications to the extraction procedure of bacterial ATP could improve the reliability of this technique.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D005188 False Negative Reactions Negative test results in subjects who possess the attribute for which the test is conducted. The labeling of diseased persons as healthy when screening in the detection of disease. (Last, A Dictionary of Epidemiology, 2d ed) False Negative Reaction,Reaction, False Negative,Reactions, False Negative
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D014556 Urine Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts

Related Publications

L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
June 2004, Bioscience, biotechnology, and biochemistry,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
June 2024, Diagnostic microbiology and infectious disease,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
January 1977, Surgical forum,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
January 2013, Biocontrol science,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
June 1994, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
October 1984, Journal of clinical microbiology,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
June 2009, Wei sheng wu xue bao = Acta microbiologica Sinica,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
July 1996, Diagnostic microbiology and infectious disease,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
January 1989, Scandinavian journal of infectious diseases,
L Selan, and F Berlutti, and C Passariello, and M C Thaller, and G Renzini
January 2022, Biocontrol science,
Copied contents to your clipboard!