Visuotopic organization of corticocortical connections in the visual system of the cat. 1992

P A Salin, and P Girard, and H Kennedy, and J Bullier
INSERM 94, Bron, France.

It has recently been demonstrated that, in contrast with the retinogeniculocortical projection, the corticocortical connections in the cat present a high degree of convergence and divergence. This suggests that some corticocortical connections link nonvisuotopically corresponding regions. Using fine-grain electrophysiological mapping and anatomical tracing, we have set out to test this possibility by placing a small injection of retrograde tracer in area 17 and by comparing the extent of visual field encoded in the region of area 18 containing labeled cells and that represented in the uptake zone. The results demonstrate that the size of the labeled region on the surface of area 18 is independent of eccentricity and that, despite its anisotrophy, this region of labeling encodes a broadly circular region of visual field that is larger than that encoded in the uptake zone of the tracer in area 17. For example, in the representation of lower visual field, a virtual point in area 17 that encodes a visual field region 4 degrees in diameter receives afferents from a region of area 18 encoding a region 11 degrees wide. Examination of the density of labeled cells in the labeled zone in area 18 reveals that the highest density is observed in a region in visuotopic correspondence with the injection site. However, high labeling density is also occasionally found in patches that do not represent the same visual field region as the injection site. Many receptive fields of neurons recorded in the labeled zone in area 18 only partially overlap or fail to overlap the visual field region encoded by the injection site. The results also demonstrate that the extent of visual field encoded in the labeled zone in area 18 is the same as that represented in the region of intrinsic labeling in area 17. It is suggested that cortical afferents coming from several cortical areas and converging on a column of cells in area 17 cover the same extent of visual field and that this cortical network constitutes the structural basis for the modulatory regions of the receptive field as well as the synchronization of neurons in different cortical areas.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

P A Salin, and P Girard, and H Kennedy, and J Bullier
October 1984, The Journal of comparative neurology,
P A Salin, and P Girard, and H Kennedy, and J Bullier
October 1984, The Journal of comparative neurology,
P A Salin, and P Girard, and H Kennedy, and J Bullier
February 1989, Proceedings of the National Academy of Sciences of the United States of America,
P A Salin, and P Girard, and H Kennedy, and J Bullier
August 1996, Neuroscience,
P A Salin, and P Girard, and H Kennedy, and J Bullier
April 2008, The Journal of comparative neurology,
P A Salin, and P Girard, and H Kennedy, and J Bullier
January 1995, Physiological reviews,
P A Salin, and P Girard, and H Kennedy, and J Bullier
March 1997, Neuroreport,
P A Salin, and P Girard, and H Kennedy, and J Bullier
July 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P A Salin, and P Girard, and H Kennedy, and J Bullier
January 1992, Experimental brain research,
P A Salin, and P Girard, and H Kennedy, and J Bullier
June 1987, Brain research,
Copied contents to your clipboard!