Calcitonin gene-related peptide in nucleus ambiguus motoneurons in rat: viscerotopic organization. 1992

B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Pennsylvania 19104.

Calcitonin gene-related peptide has been reported in the rat nucleus ambiguus. This nucleus comprises a dorsal division that is the source of special visceral efferents innervating the striated muscle of the upper alimentary tract and a ventral division supplying general visceral efferents primarily to the heart. The distribution of calcitonin gene-related peptide immunoreactive neurons in the two divisions was determined by using a combination of immunocytochemical techniques and fluorescent retrograde tracing. In 22 rats, injections of Fluoro-Gold were made into either the supranodosal vagus nerve, palatopharynx, larynx, esophagus, or heart. Following colchicine injection, medullary sections were processed immunocytochemically for calcitonin gene-related peptide. Injection of Fluoro-Gold into the supranodosal vagus resulted in prominent labeling of neurons in the dorsal and ventral divisions of the nucleus ambiguus. The majority of fluorescent labeled neurons in the dorsal division were found to be immunoreactive for calcitonin gene-related peptide, while those labeled neurons in the ventral division were unreactive for the peptide. With esophageal, and palatopharyngeal and cricothyroid injections, many fluorescent labeled neurons that were immunoreactive for calcitonin gene-related peptide were found respectively in the compact and semicompact formations of the dorsal division. In contrast, injections of the heart resulted in fluorescent labeled neurons, which were unreactive for calcitonin gene-related peptide, localized to the external formation. The results demonstrate that calcitonin gene-related peptide immunoreactive neurons are localized entirely to the dorsal division of the nucleus ambiguus and that all striated muscular areas of the alimentary tract are innervated by calcitonin gene-related peptide containing motoneurons. The localization of calcitonin gene-related peptide to vagal motoneurons also known to contain acetylcholine and the increase in acetylcholine receptor synthesis caused by this peptide suggest that calcitonin gene-related peptide acts as a cotransmitter with acetylcholine in special visceral efferent vagal motoneurons.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004064 Digestive System A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS). Ailmentary System,Alimentary System
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013266 Stilbamidines STILBENES with AMIDINES attached.
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
April 1989, The Journal of comparative neurology,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
June 1990, Journal of neuroscience research,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
June 1989, Neuroscience letters,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
December 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
September 1993, Experimental neurology,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
December 1983, Experimental neurology,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
October 1997, International journal of sports medicine,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
August 1987, The Journal of comparative neurology,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
July 1990, Brain research. Molecular brain research,
B H Lee, and R B Lynn, and H S Lee, and R R Miselis, and S M Altschuler
February 1993, Acta histochemica,
Copied contents to your clipboard!