Activation of skeletal muscle nicotinic acetylcholine receptors. 1992

C J Lingle, and D Maconochie, and J H Steinbach
Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110.

Work over the past ten years has greatly increased our understanding of both the structure and function of the muscle nicotinic acetylcholine receptor. There is a strongly supported general picture of how the receptor functions: agonist binds rapidly to sites of low affinity and channel opening occurs at a rate comparable to the agonist dissociation rate. Channel closing is slow, so the channel has a high probability of being open if both agonist-binding sites are occupied by ACh. Results of expression studies have shown that each subunit can influence AChR activation and have given a structural basis for the major physiological change known for muscle AChR, the developmental change in AChR activation. These general statements notwithstanding, there are still major areas of uncertainty which limit our understanding. We have emphasized these areas of uncertainty in this review, to indicate what needs to be done. First, the quantitative estimates of rate constants are not as strongly supported as they should be. The major reasons are twofold--uncertainties about the interpretation of components in the kinetic data and difficulties of resolving brief events. As a result, any inferences about the functional consequences of structural alterations must remain tenuous. Second, the functional behavior of individual AChRs is not as well understood as it should be. The kinetic behavior of an individual receptor clearly can be complex (section II). In addition, there is evidence that superimposed on this complexity there may be stable and kinetically distinguishable populations of receptors (section III). Until the basis for the kinetically defined populations is clarified, kinetic parameters for receptors of defined structure cannot be unambiguously obtained. Finally, it is not surprising that the studies of AChR of altered structure have not given definitive results. Two reasons should be apparent from the preceding points: there is not a fully supported approach for kinetic analysis, and the "normal" population may not be clearly defined. An additional complication is also emerging, in that the available data support the idea that specific residues distributed over all subunits may influence AChR activation. This possibility renders the task of analysis that much more difficult. The muscle nicotinic AChR has served as a prototype for the family of transmitter-gated membrane channels, which includes the muscle and neuronal nicotinic receptors, the GABAA, the glycine and possibly the non-NMDA excitatory amino acid receptor (Stroud et al., 1990). It is interesting to note that the functional properties of the GABAA receptor, probably the best-studied of the other members of the family are rather similar.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C J Lingle, and D Maconochie, and J H Steinbach
September 2005, The Journal of pharmacology and experimental therapeutics,
C J Lingle, and D Maconochie, and J H Steinbach
January 1989, Annual review of physiology,
C J Lingle, and D Maconochie, and J H Steinbach
October 2010, Journal of neuroimmunology,
C J Lingle, and D Maconochie, and J H Steinbach
January 1993, Anesthesiology,
C J Lingle, and D Maconochie, and J H Steinbach
July 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C J Lingle, and D Maconochie, and J H Steinbach
April 1999, Experimental brain research,
C J Lingle, and D Maconochie, and J H Steinbach
January 1985, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
C J Lingle, and D Maconochie, and J H Steinbach
October 2015, Biochemical pharmacology,
C J Lingle, and D Maconochie, and J H Steinbach
January 1977, Methods in enzymology,
C J Lingle, and D Maconochie, and J H Steinbach
June 2018, British journal of pharmacology,
Copied contents to your clipboard!