Transcriptional regulation of glial fibrillary acidic protein (GFAP)-mRNA expression during postnatal development of mouse brain. 1992

H Riol, and C Fages, and M Tardy
INSERM U. 282, Hôpital H. Mondor, Créteil, France.

During mouse brain maturation, GFAP-mRNA undergoes a two-step developmental expression. It increases between birth and day 15 (period of astrocytic proliferation) and then decreases until day 55 (period of astrocytic morphological differentiation). We have developed an in vitro transcription procedure, as a mean to study the part of transcriptional control in this biphasic expression. After RNA synthesis by endogenous RNA polymerases in nuclei isolated from mouse brain (of 3 to 55 days and 217 days), the relative rates of GFAP-mRNA transcripts were analysed by hybridization with a specific cDNA probe. As early as 3 days after birth, the rate of GFAP-mRNA transcripts was maximal, whereas unexpectedly, it showed a significant decrease in mice of 15 days and stayed low until the 55th day. Therefore, a transcriptional control may take place early in mouse brain postnatal development by increasing the transcriptional rate of the GFAP gene in astrocytes, and during the transition from proliferation to differentiation phase of astrocytes (that occurs at the 15th day after birth) by decreasing this rate. However, posttranscriptional events may also occur to modulate the level of the cytoplasmic GFAP-mRNA. In older mice (217 days), the low rate of GFAP-mRNA transcripts found is not concordant with the high cytoplasmic level generally observed in gliosis of the aging brain. Our data suggest posttranscriptional events at this age.

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

H Riol, and C Fages, and M Tardy
September 2023, BMJ case reports,
H Riol, and C Fages, and M Tardy
December 1991, Cellular and molecular neurobiology,
H Riol, and C Fages, and M Tardy
January 1978, Journal of the neurological sciences,
H Riol, and C Fages, and M Tardy
December 1991, Journal of neuroscience methods,
H Riol, and C Fages, and M Tardy
March 2007, Experimental eye research,
H Riol, and C Fages, and M Tardy
July 1991, Brain research. Molecular brain research,
H Riol, and C Fages, and M Tardy
April 1983, International journal of cancer,
Copied contents to your clipboard!