Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. 2006

S Fediuc, and M P Gaidhu, and R B Ceddia
School of Kinesiology and Health Science, York University, Toronto, Canada.

The purpose of this study was to investigate the effects of long-chain fatty acids (LCFAs) on AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation and beta-oxidation in skeletal muscle. L6 rat skeletal muscle cells were exposed to various concentrations of palmitate (1-800 microM). Subsequently, ACC and AMPK phosphorylation and fatty acid oxidation were measured. A 2-fold increase in both AMPK and ACC phosphorylation was observed in the presence of palmitate concentrations as low as 10 microM, which was also accompanied by a significant increase in fatty acid oxidation. The effect of palmitate on AMPK and ACC phosphorylation was dose-dependent, reaching maximum increases of 3.5- and 4.5-fold, respectively. Interestingly, ACC phosphorylation was coupled with AMPK activation at palmitate concentrations ranging from 10 to 100 microM; however, at concentrations >200 microM, ACC phosphorylation and fatty acid oxidation remained high even after AMPK phosphorylation was completely prevented by the use of a selective AMPK inhibitor. This indicates that LCFAs regulate ACC activity by AMPK-dependent and -independent mechanisms, based on their abundance in skeletal muscle cells. Here, we provide novel evidence that the AMPK/ACC pathway may operate as a mechanism to sense and respond to the lipid energy charge of skeletal muscle cells.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000103 Acetyl-CoA Carboxylase A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC 6.4.1.2. Acetyl Coenzyme A Carboxylase,Acetyl CoA Carboxylase,Carboxylase, Acetyl-CoA
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000620 Aminoimidazole Carboxamide An imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. Ba 2756,Carboxamide, Aminoimidazole

Related Publications

S Fediuc, and M P Gaidhu, and R B Ceddia
April 2005, Journal of applied physiology (Bethesda, Md. : 1985),
S Fediuc, and M P Gaidhu, and R B Ceddia
February 2003, Biochemical Society transactions,
S Fediuc, and M P Gaidhu, and R B Ceddia
January 1997, Journal of applied physiology (Bethesda, Md. : 1985),
S Fediuc, and M P Gaidhu, and R B Ceddia
November 1998, Journal of applied physiology (Bethesda, Md. : 1985),
S Fediuc, and M P Gaidhu, and R B Ceddia
February 1997, The American journal of physiology,
S Fediuc, and M P Gaidhu, and R B Ceddia
May 1997, The Journal of biological chemistry,
S Fediuc, and M P Gaidhu, and R B Ceddia
February 1996, The American journal of physiology,
S Fediuc, and M P Gaidhu, and R B Ceddia
December 2002, Journal of applied physiology (Bethesda, Md. : 1985),
S Fediuc, and M P Gaidhu, and R B Ceddia
February 1999, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!