Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. 2006

Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
Vollum Inst., OHSU L474, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.

Early in development, neurons only express NR1/NR2B-containing N-methyl-d-aspartate (NMDA) receptors. Later, NR2A subunits are upregulated during a period of rapid synapse formation. This pattern is often interpreted to indicate that NR2A-containing receptors are synaptic and that NR2B-containing receptors are extrasynaptic. We re-examined this issue using whole cell recordings in cultured hippocampal neurons. As expected, the inhibition of whole cell currents by the NR2B-specific antagonist, ifenprodil, progressively decreased from 69.5 +/- 2.4% [6 days in vitro (DIV)] to 54.9 +/- 2.6% (8 DIV), before reaching a plateau in the second week (42.5 +/- 2%, 12-19 DIV). In NR2A-/- neurons, which express only NR1/NR2B-containing NMDA receptors, autaptic excitatory postsynaptic currents (EPSCs; > or =12 DIV) were more sensitive to ifenprodil and decayed more slowly than EPSCs in wild-type neurons. Thus NR2B-containing receptors were not excluded from synapses. We blocked synaptic NMDA receptors with MK-801 during evoked transmitter release, thus allowing us to isolate extrasynaptic receptors. Ifenprodil inhibition of this extrasynaptic population was highly variable in different neurons. Furthermore, extrasynaptic receptors in autaptic cultures were only partially blocked by ifenprodil, indicating that NR2A-containing receptors are not exclusively confined to the synapse. Extrasynaptic NR2A-containing receptors were also detected in NR2A(-/-) neurons transfected with full-length NR2A. Truncation of the NR2A C terminus did not eliminate synaptic expression of NR2A-containing receptors. Our results indicate that NR2A- and NR2B-containing receptors can be located in either synaptic or extrasynaptic compartments.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic

Related Publications

Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
February 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
March 2020, Journal of neurophysiology,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
January 2017, Scientific reports,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
August 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
February 1997, The Journal of biological chemistry,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
October 2009, Neuron,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
June 2017, Scientific reports,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
October 2004, The Journal of comparative neurology,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
March 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christopher G Thomas, and Ashleigh J Miller, and Gary L Westbrook
February 2018, Journal of molecular neuroscience : MN,
Copied contents to your clipboard!