Neuronal mechanisms of interaction of Deiters nucleus with the cerebral cortex. 1992

V H Sarkisian, and V V Fanardjian
Laboratory of Physiology of Central Nervous System, Academy of Sciences of Armenia, Yerevan.

The effects of stimulation of the vestibular nerve and five different cerebral cortex areas on the neuronal activity of the lateral vestibular nucleus of Deiters were studied. Stimulation of the cerebral cortex is shown to lead to antidromic and synaptic activation of Deiters neurons. The synaptic potentials of Deiters neurons evoked from the cerebral cortex were of mono- and polysynaptic origin. In particular, stimulation of the cerebral cortex evoked in Deiters neurons mono- and polysynaptic excitatory postsynaptic potentials. Collaterals of vestibulospinal neurons reaching different cortex fields as well as convergence of influences from these cortex fields on Deiters neurons were revealed. Inhibitory effects of the cerebral cortex on Deiters neurons were of polysynaptic origin and occurred rarely. The topical correlation between Deiters nucleus and different areas of the cerebral cortex was found. The peculiarities and functional significance of the effects obtained are discussed.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003689 Vestibular Nucleus, Lateral Vestibular nucleus lying immediately superior to the inferior vestibular nucleus and composed of large multipolar nerve cells. Its upper end becomes continuous with the superior vestibular nucleus. Deiter Nucleus,Lateral Vestibular Nucleus,Deiter's Nucleus,Nucleus Vestibularis Lateralis,Nucleus Vestibularis Magnocellularis,Nucleus of Deiters,Deiters Nucleus,Nucleus Vestibularis Laterali,Nucleus Vestibularis Magnocellulari,Nucleus, Deiter,Nucleus, Deiter's,Nucleus, Lateral Vestibular,Vestibularis Laterali, Nucleus,Vestibularis Lateralis, Nucleus,Vestibularis Magnocellulari, Nucleus,Vestibularis Magnocellularis, Nucleus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves

Related Publications

V H Sarkisian, and V V Fanardjian
January 1984, Neirofiziologiia = Neurophysiology,
V H Sarkisian, and V V Fanardjian
August 1979, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
V H Sarkisian, and V V Fanardjian
February 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
V H Sarkisian, and V V Fanardjian
January 1995, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
V H Sarkisian, and V V Fanardjian
January 1982, Uspekhi fiziologicheskikh nauk,
V H Sarkisian, and V V Fanardjian
January 1965, Archiv fur Ohren-, Nasen- und Kehlkopfheilkunde,
V H Sarkisian, and V V Fanardjian
November 1973, Journal of the neurological sciences,
V H Sarkisian, and V V Fanardjian
January 1995, Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine,
Copied contents to your clipboard!