Engineered human dicentric chromosomes show centromere plasticity. 2005

Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.

The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
July 2010, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
March 1986, Human genetics,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
July 2012, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
January 1974, Hereditas,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
December 2013, Biochemical Society transactions,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
April 2012, Current biology : CB,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
November 2022, Cells,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
February 2006, Proceedings of the National Academy of Sciences of the United States of America,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
October 2000, Human genetics,
Anne W Higgins, and Karen M Gustashaw, and Huntington F Willard
July 2017, Molecular biology and evolution,
Copied contents to your clipboard!