Nucleic acid interactive properties of a peptide corresponding to the N-terminal zinc finger domain of HIV-1 nucleocapsid protein. 1992

M D Delahunty, and T L South, and M F Summers, and R L Karpel
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County 21228.

An 18-residue peptide (NC-F1) with an amino acid sequence corresponding to the N-terminal zinc finger of human immunodeficiency virus-1 nucleocapsid protein has been shown to bind to nucleic acids by fluorescence and NMR methods. Previously, this peptide has been shown to fold into a defined structure when bound to zinc (Summers et al., 1990). We have used a fluorescent polynucleotide, poly(ethenoadenylic acid), to monitor binding of this peptide to nucleic acids. In the presence of zinc, the peptide had a smaller site size (1.75 nucleotide residues/peptide) than in the absence of the metal ion (2.75). The salt sensitivity of the interaction indicated that two ion pairs are involved in the association of Zn2+ (NC-F1) with polynucleotide, whereas one ion pair is found in the metal-free peptide-nucleic acid complex. Competition experiments with single-stranded DNA (ss DNA) in either the presence or absence of Zn2+ showed that the peptide bound to ss DNA. Using NMR methods, we monitored the binding of a synthetic oligonucleotide, d(TTTGGTTT), to Zn(NC-F1). The hydrophobic residues F2 and I10, which are on the surface of the peptide and have been implicated in viral RNA recognition, were shown to interact with the oligomer. In accord with this observation, analysis of the salt dependence of the polynucleotide-peptide interaction indicates a nonelectrostatic component of about -6 kcal/mol, a value consistent with theoretical estimates of stacking energies of phenylalanine with nucleic acid bases.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M D Delahunty, and T L South, and M F Summers, and R L Karpel
June 2002, Proceedings of the National Academy of Sciences of the United States of America,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
January 2002, Comptes rendus biologies,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
January 2014, PloS one,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
January 1993, Protein science : a publication of the Protein Society,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
September 1994, The Journal of biological chemistry,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
August 2003, Nucleic acids research,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
January 2010, RNA biology,
M D Delahunty, and T L South, and M F Summers, and R L Karpel
January 2004, Current topics in medicinal chemistry,
Copied contents to your clipboard!