Intramolecular hydrogen bonding in disubstituted ethanes: general considerations and methodology in quantum mechanical calculations of the conformational equilibria of succinamate monoanion. 2005

Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
Chemical Laboratories and Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.

The importance of intramolecular hydrogen bonding between the carboxylate oxygen and amide proton of succinamate anion has been investigated by quantum mechanical simulations as a function of solvent for comparison with conformational equilibria estimated by NMR spectroscopy. The focus is on those methodological considerations of general interest to the conformational equilibrium problem, which are also particularly relevant to the quantum calculations. The roughly planar symmetry of the amide and carboxylate substituents of succinamate anion and the possibility of intramolecular hydrogen-bond formation together suggest that the orientational degrees of freedom of the substituents could play an important role in the equilibrium of the CH2-CH2 torsion. To test this hypothesis, two-dimensional potential-energy surfaces (PESs) were mapped out from the quantum mechanical calculations, with coordinates corresponding to the CH2-CH2 torsional and amide group rotational degrees of freedom. The Boltzmann populations obtained from two-dimensional PESs and those obtained from a one-dimensional adiabatic surface for the CH2-CH2 torsion were compared with the experimental results. In these comparisons, the agreement of calculated gauche fractions with corresponding experimental values was checked, as well as the agreement between predicted coupling constants and those determined from experimental spectra. In polar protic and aprotic solvents, where highly polar trans conformations can be stabilized by dipole-dipole and hydrogen-bonding interactions with the solvent, the orientational degree of freedom of the amide substituent appears to play a sufficiently important role in the CH2-CH2 torsional equilibrium that it cannot be safely ignored in the simulations.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D004980 Ethane A two carbon alkane with the formula H3C-CH3.
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D019802 Succinic Acid A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Potassium Succinate,Succinate,1,2-Ethanedicarboxylic Acid,1,4-Butanedioic Acid,Ammonium Succinate,Butanedioic Acid,1,2 Ethanedicarboxylic Acid,1,4 Butanedioic Acid,Succinate, Ammonium,Succinate, Potassium
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
November 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
August 2006, The journal of physical chemistry. A,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
November 2013, Journal of molecular modeling,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
August 2007, The journal of physical chemistry. A,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
June 2008, The Journal of chemical physics,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
February 2006, The journal of physical chemistry. A,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
July 2005, The journal of physical chemistry. A,
Mark S Rudner, and David R Kent, and William A Goddard, and John D Roberts
April 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Copied contents to your clipboard!