Retinal projections in the cane toad, Bufo marinus. 1992

J Wye-Dvorak, and C Straznicky, and P Tóth
Department of Anatomy and Histology, School of Medicine, Flinders University of South Australia, Adelaide.

The location and extent of retinorecipient areas in the cane toad, Bufo marinus, were established by anterograde transport of cobaltic-lysine complex from the cut optic nerve. Most of the labeled optic axons travelled in the marginal optic tract, while others were in the axial optic tract, and/or the basal optic tract. Retinal projections terminated in both contralateral and ipsilateral targets. In addition to the optic tectum, the main visual center, retinorecipient areas included the suprachiasmatic nucleus, rostral visual nucleus, neuropil of Bellonci, corpus geniculatum thalamicum, ventrolateral thalamic nucleus (dorsal part), posterior thalamic neuropil, uncinate neuropil, pretectal nucleus lentiformis mesencephali and basal optic nucleus. While all of these retinorecipient areas receive optic fibers from both eyes, the ipsilateral retinal projections were observed to be generally sparser than those from the contralateral retina. A sparse optic fiber projection covers the surface of the ipsilateral optic tectum and is most prominent rostromedially and caudolaterally. The position and the extent of each of the retinorecipient areas were determined in relation to a three-dimensional coordinate system. Morphometric analysis showed that 85.3% of the retinorecipient area is in the contralateral optic tectum, 10.4% in contralateral non-tectal areas, 1.6% in the ipsilateral optic tectum and 2.7% in ipsilateral non-tectal areas. The presence of an ipsilateral tectal projection and the well defined pretectal visual neuropil complex may be related to the highly developed visual behavior and visual acuity of Bufo marinus.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

J Wye-Dvorak, and C Straznicky, and P Tóth
August 1990, Australian veterinary journal,
J Wye-Dvorak, and C Straznicky, and P Tóth
January 1985, Comparative biochemistry and physiology. A, Comparative physiology,
J Wye-Dvorak, and C Straznicky, and P Tóth
January 2001, Reproduction (Cambridge, England),
J Wye-Dvorak, and C Straznicky, and P Tóth
August 1999, The Journal of experimental biology,
J Wye-Dvorak, and C Straznicky, and P Tóth
January 2009, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
J Wye-Dvorak, and C Straznicky, and P Tóth
January 1978, Comparative biochemistry and physiology. C: Comparative pharmacology,
J Wye-Dvorak, and C Straznicky, and P Tóth
January 1988, Vision research,
J Wye-Dvorak, and C Straznicky, and P Tóth
September 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution,
J Wye-Dvorak, and C Straznicky, and P Tóth
November 2005, Animal reproduction science,
J Wye-Dvorak, and C Straznicky, and P Tóth
July 2002, Laterality,
Copied contents to your clipboard!