Sequencing of random Euplotes crassus macronuclear genes supports a high frequency of +1 translational frameshifting. 2005

Lawrence A Klobutcher
Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032, USA. klobutcher@nso2.uchc.edu

Programmed translational frameshifts have been identified in genes from a broad range of organisms, but typically only a very few genes in a given organism require a frameshift for expression. In contrast, a recent analysis of gene sequences available in GenBank from ciliates in the genus Euplotes indicated that >5% required one or more +1 translational frameshifts to produce their predicted protein products. However, this sample of genes was nonrandom, biased, and derived from multiple Euplotes species. To test whether there truly is an abundance of frameshift genes in Euplotes, and to more accurately assess their frequency, we sequenced a random sample of 25 cloned genes/macronuclear DNA molecules from Euplotes crassus. Three new candidate +1 frameshift genes were identified in the sample that encode a membrane occupation and recognition nexus (MORN) repeat protein, a C(2)H(2)-type zinc finger protein, and a Ser/Thr protein kinase. Reverse transcription-PCR analyses indicate that all three genes are expressed in vegetatively proliferating cells and that the mRNAs retain the requirement of a frameshift. Although the sample of sequenced genes is relatively small, the results indicate that the frequency of genes requiring frameshifts in E. crassus is between 3.7% and 31.7% (at a 95% confidence interval). The current and past data also indicate that frameshift sites are found predominantly in genes that likely encode nonabundant proteins in the cell.

UI MeSH Term Description Entries
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016053 RNA, Protozoan Ribonucleic acid in protozoa having regulatory and catalytic roles as well as involvement in protein synthesis. Protozoan RNA
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

Lawrence A Klobutcher
January 2012, Molekuliarnaia biologiia,
Lawrence A Klobutcher
February 2016, Scientific reports,
Lawrence A Klobutcher
January 1995, The Journal of eukaryotic microbiology,
Lawrence A Klobutcher
January 1999, The Journal of eukaryotic microbiology,
Copied contents to your clipboard!