Autoregulation of choroidal blood flow in the rabbit. 1992

J W Kiel, and A P Shepherd
Department of Physiology, University of Texas Health Science Center, San Antonio 78284.

Previous studies show that choroidal blood flow is not autoregulated when intraocular pressure (IOP) is increased to raise venous pressure and lower the perfusion pressure gradient. However, the autoregulatory response to changes in mean arterial pressure (MAP) is unclear. In the current study, the perfusion pressure gradient (MAP-IOP) was altered by (1) decreasing MAP while IOP was held at 5, 15, and 25 mmHg, and (2) increasing the IOP at the prevailing MAP in anesthetized rabbits (n = 8). An occluder on the thoracic vena cava was used to vary MAP; this was monitored through an ear artery catheter. Two catheters were inserted in the vitreous to monitor and control IOP. Choroidal blood flow was measured by laser Doppler flowmetry using a slender stainless-steel probe positioned next to the retinal surface. The efficacy of autoregulation depended on the IOP. When IOP was held constant at 5 mmHg, choroidal blood flow did not fall until the perfusion pressure gradient was less than 40 mmHg. The pressure-flow relationship became progressively more linear (ie, the efficacy of autoregulation decreased) when the IOP was held constant at 15 and 25 mmHg. When IOP was varied and MAP was held constant, the pressure-flow relationship was linear at IOPs greater than 20-25 mmHg. However, choroidal blood flow was pressure independent when the IOP was less than 20-25 mmHg. Simultations using a myogenic mathematic model of the choroid gave results similar to the experimental observations. It was concluded that a myogenic mechanism may be responsible for the autoregulation of choroidal blood flow in the rabbit.

UI MeSH Term Description Entries
D007429 Intraocular Pressure The pressure of the fluids in the eye. Ocular Tension,Intraocular Pressures,Ocular Tensions,Pressure, Intraocular,Pressures, Intraocular,Tension, Ocular,Tensions, Ocular
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001775 Blood Circulation The movement of the BLOOD as it is pumped through the CARDIOVASCULAR SYSTEM. Blood Flow,Circulation, Blood,Blood Flows,Flow, Blood
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002829 Choroid The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA. Choriocapillaris,Haller Layer,Haller's Layer,Sattler Layer,Sattler's Layer,Choroids
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation

Related Publications

J W Kiel, and A P Shepherd
October 1999, Experimental eye research,
J W Kiel, and A P Shepherd
December 2000, Experimental eye research,
J W Kiel, and A P Shepherd
March 1996, Investigative ophthalmology & visual science,
J W Kiel, and A P Shepherd
May 1991, Investigative ophthalmology & visual science,
J W Kiel, and A P Shepherd
December 1984, Neurological research,
J W Kiel, and A P Shepherd
December 1979, The American journal of physiology,
J W Kiel, and A P Shepherd
March 1995, Investigative ophthalmology & visual science,
J W Kiel, and A P Shepherd
January 2002, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde,
J W Kiel, and A P Shepherd
January 1987, The American journal of physiology,
Copied contents to your clipboard!