Common HEXB polymorphisms reduce serum HexA and HexB enzymatic activities, potentially masking Tay-Sachs disease carrier identification. 2006

Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada V6H 3N1. hvallance@cw.bc.ca

A DNA-proven Tay-Sachs disease (TSD) carrier and his brother were found to have serum percent Hexosaminidase A (%HexA) enzymatic activities in the non-carrier range, while the leukocyte %HexA profiles clearly identified them as TSD heterozygotes. Both their serum HexA and HexB enzymatic activities were below reference range, suggesting inheritance of mutations in both the HEXA (alpha-subunit) and HEXB (beta-subunit) genes. DNA sequencing revealed that both individuals, carried the common HEXA 1277_1278insTATC mutation, and two common HEXB polymorphisms: [619A>G (+) delTG]. To determine if these HEXB polymorphisms reduce HexA and HexB enzymatic activities, 69 DNA samples from subjects previously screened enzymatically in both serum and leukocytes for TSD carrier status were selected for either high, mid-range or low serum Total Hex (defined as the sum of HexA and HexB) activities and were tested for the HEXB mutations. Further, three additional TSD carriers ascertained by the atypical pattern of normal serum %HexA but carrier leukocyte %HexA, were found to have the [delTG (+) 619A>G] genotype. In addition, the frequency of the [delTG (+) 619A>G] genotype was significantly higher (P < 0.01) in subjects with low serum HexB enzymatic activities. Given the high frequency of the [delTG (+) 619A>G] haplotype in the Ashkenazi Jewish population (approximately 10%), up to 10% of TSD carriers may have normal serum %HexA values with low total Hex. Accordingly, serum %HexA should not be the sole criterion used for carrier status determination. Where total Hex activity is reduced, further testing with leukocyte Hex profiles is indicated.

UI MeSH Term Description Entries
D007585 Jews An ethnic group with historical ties to the land of ISRAEL and the religion of JUDAISM. Jew
D008297 Male Males
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006580 Genetic Carrier Screening Identification of individuals who are heterozygous at a GENETIC LOCUS for a recessive PHENOTYPE. Carriers, Genetic, Detection,Genetic Carriers, Detection,Heterozygote Detection,Carrier Detection, Genetic,Detection, Genetic Carrier,Genetic Carrier Detection,Heterozygote Screening,Carrier Screening, Genetic,Detection, Heterozygote,Screening, Genetic Carrier,Screening, Heterozygote,Screenings, Genetic Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001619 beta-N-Acetylhexosaminidases A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease. beta-N-Acetylhexosaminidase,N-Acetyl-beta-D-hexosaminidase,beta-Hexosaminidase,beta-N-Acetyl-D-hexosaminidase,beta-N-Acetyl-hexosaminidase,N Acetyl beta D hexosaminidase,beta Hexosaminidase,beta N Acetyl D hexosaminidase,beta N Acetyl hexosaminidase,beta N Acetylhexosaminidase,beta N Acetylhexosaminidases
D013661 Tay-Sachs Disease An autosomal recessive neurodegenerative disorder characterized by the onset in infancy of an exaggerated startle response, followed by paralysis, dementia, and blindness. It is caused by mutation in the alpha subunit of the HEXOSAMINIDASE A resulting in lipid-laden ganglion cells. It is also known as the B variant (with increased HEXOSAMINIDASE B but absence of hexosaminidase A) and is strongly associated with Ashkenazic Jewish ancestry. G(M2) Gangliosidosis, Type I,Gangliosidosis G(M2), Type I,Gangliosidosis GM2, B Variant,Hexosaminidase A Deficiency Disease,Tay-Sachs Disease, B Variant,Amaurotic Familial Idiocy,B Variant GM2 Gangliosidosis,B Variant GM2-Gangliosidosis,Deficiency Disease Hexosaminidase A,Familial Amaurotic Idiocy,GM2 Gangliosidosis, B Variant,GM2 Gangliosidosis, Type 1,GM2 Gangliosidosis, Type I,GM2-Gangliosidosis, Type I,Gangliosidosis GM2 , Type 1,Gangliosidosis GM2, Type I,HexA Deficiency,Hexosaminidase A Deficiency,Hexosaminidase alpha-Subunit Deficiency (Variant B),Sphingolipidosis, Tay-Sachs,Amaurotic Idiocy, Familial,B Variant GM2-Gangliosidoses,Deficiency, Hexosaminidase A,Deficiency, Hexosaminidase alpha-Subunit (Variant B),GM2-Gangliosidosis, B Variant,Hexosaminidase alpha Subunit Deficiency (Variant B),Sphingolipidosis, Tay Sachs,Tay Sachs Disease,Tay Sachs Disease, B Variant,Tay-Sachs Sphingolipidosis,Type I GM2-Gangliosidosis
D054818 Hexosaminidase A A mammalian beta-hexosaminidase isoform that is a heteromeric protein comprized of both hexosaminidase alpha and hexosaminidase beta subunits. Deficiency of hexosaminidase A due to mutations in the gene encoding the hexosaminidase alpha subunit is a case of TAY-SACHS DISEASE. Deficiency of hexosaminidase A and HEXOSAMINIDASE B due to mutations in the gene encoding the hexosaminidase beta subunit is a case of SANDHOFF DISEASE. Hex A,beta-N-Acetylhexosaminidase A,beta N Acetylhexosaminidase A

Related Publications

Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
January 2018, Human genome variation,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
February 2010, Biochemical and biophysical research communications,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
July 1990, Lancet (London, England),
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
April 1990, Lancet (London, England),
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
January 1997, Human mutation,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
January 1971, Nihon Shonika Gakkai zasshi. Acta paediatrica Japonica,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
December 1993, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
September 2012, Gene,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
August 2009, Human genetics,
Hilary Vallance, and Tara J Morris, and Marion Coulter-Mackie, and Joyce Lim-Steele, and Michael Kaback
June 1974, Clinica chimica acta; international journal of clinical chemistry,
Copied contents to your clipboard!