Disposition kinetics of phospholipid liposomes. 1992

P Palatini
Department of Pharmacology, University of Padova, Italy.

This article reviews the disposition of intravenously injected phospholipid liposomes and discusses the problems related to its kinetic modeling. The processes responsible for the plasma clearance of liposomes are examined in detail and it is shown that mechanisms other than reversible distribution to the extravascular space are, as a rule, responsible for the biphasic plasma clearance patterns that are typically observed following bolus intravenous injection of liposomes. Accordingly, a one-compartment open model is generally sufficient to describe the disposition kinetics of phospholipid vesicles. Two factors may be responsible for the observation of a biphasic decline of plasma liposome concentration. The first factor is the presence of different liposomal species with different kinetic behaviors. Kinetically distinct vesicles are present in preparations of liposomes that are heterogeneous in size, since the larger vesicles are cleared at a faster rate than the smaller ones. Different liposomal species may also originate in the plasma as a result of: i) fusion between phospholipid vesicles with generation of larger liposomal structures; and ii) interaction with high-density lipoproteins (HDL) with consequent production of either liposomes that have acquired apoproteins or lipoprotein particles enriched in phospholipids. Both these species are cleared by specific mechanisms at rates different from that of the original vesicle. The second factor is a time-dependent decrease in clearance due to progressive saturation of the retention capacity of the cells that take up liposomes. A convex concentration-time decay curve has also been reported. This decay pattern is consistent with a concentration (dose)-dependent elimination. As this observation relates to only one type of liposome (small unilamellar vesicles composed of sphingomyelin and cholesterol), its relevance to the disposition of liposomes of different size and composition remains to be established.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Palatini
January 1988, European journal of clinical pharmacology,
P Palatini
April 1996, Biochimica et biophysica acta,
P Palatini
October 1980, Pharmacological research communications,
P Palatini
October 1983, British journal of clinical pharmacology,
P Palatini
January 1976, Clinical pharmacology and therapeutics,
P Palatini
December 2009, Langmuir : the ACS journal of surfaces and colloids,
P Palatini
September 1996, Acta pharmaceutica Hungarica,
P Palatini
January 1984, Journal of pharmaceutical sciences,
P Palatini
April 2007, Biophysical chemistry,
Copied contents to your clipboard!