Differences in corticosterone and dexamethasone binding to rat brain and pituitary. 1975

R De Kloet, and G Wallach, and B S McEwen

In an attempt to relate binding of 3H-corticosterone and 3H-dexamethasone to their respective potencies in blocking pituitary-adrenal activity, cytosol binding in vitro and cell nuclear binding both in vivo and in tissue slices in vitro were studied in hippocampus, hypothalamus, and anterior pituitary of adrenalectomized rats. It was found that the extremely potent glucocorticoid dexamethasone has a different pattern of binding than corticosterone in the brain and in the anterior pituitary. 1) In cytosol, differences in the estimated binding capacities in a particular tissue for 3H-corticosterone and 3H-dexamethasone and different rates of inactivation in the ability to bind the two steroids are observed. 2) For 3H-corticosterone, cytosol binding in hippocampus is higher than that in hypothalamus, and cell nuclear binding follows the same pattern. For 3H-dexamethasone, cytosol binding is again higher in the hippocampus than in hypothalamus but cell nuclear binding in the two structures is not significantly different. With respect to the anterior pituitary, binding to cell nuclei is higher for 3H-dexamethasone, while the binding to cytosol macromolecules is higher for 3H-corticosterone. 3) In vivo and in vitro cell nuclear binding for both steroids showed the same pattern among the three tissues, but in vivo data showed more distinctly the preference of 3H-dexamethasone for the anterior pituitary and the preference of 3H-corticosterone for the hippocampus. 4) When labeled in tissue slices, cell nuclear radioactivity appears to be bound to macromolecules. 5) Steroid metabolism does not occur in slices during 60 min in vitro at 25 C and cannot account for the observed tissue differences in binding. The existence of more than one population of corticosteroid-binding sites in brain and in anterior pituitary is suggested. The results are consistent with the view that the dexamethasone blockade of stress-induced ACTH release is mediated by the anterior pituitary, while the high specificity of cotricosterone binding in the hippocampus implies a specific but as yet undetermined effect of the hormone in this brain area, an effect which may not be directly related to regulation of ACTH secretion.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

R De Kloet, and G Wallach, and B S McEwen
January 1975, Progress in brain research,
R De Kloet, and G Wallach, and B S McEwen
January 1976, Biochimica et biophysica acta,
R De Kloet, and G Wallach, and B S McEwen
October 1977, Brain research,
R De Kloet, and G Wallach, and B S McEwen
September 1971, Journal of neurochemistry,
R De Kloet, and G Wallach, and B S McEwen
March 1978, Endocrinologia experimentalis,
R De Kloet, and G Wallach, and B S McEwen
January 1972, Endocrinology,
R De Kloet, and G Wallach, and B S McEwen
December 1971, Brain research,
R De Kloet, and G Wallach, and B S McEwen
July 1973, Brain research,
Copied contents to your clipboard!