Müllerian inhibiting substance in reproduction and cancer. 1992

P K Donahoe
Massachusetts General Hospital, Harvard University Medical School, Cambridge 02114.

During embryogenesis normal male phenotypic development requires the action of Müllerian Inhibiting Substance (MIS) which is secreted by Sertoli cells of the fetal testis. As testes differentiate in genetic (XY) males, they produce MIS which causes regression of the Müllerian ducts, the anlagen of the female reproductive tract. Soon thereafter, testicular androgens stimulate the Wolffian ducts. In females, on the other hand, MIS is not produced by grandulosa cells until after birth, before which, estrogens induce Müllerian duct development, while the Wolffian ducts passively atrophy in the absence of androgenic stimulation. High serum MIS levels in males are maintained until puberty, whereupon they fall to baseline levels. In females MIS is undetectable in serum until the peripubertal period when values approach the baseline levels of males. This distinct pattern of sexual and ontogenic expression presupposes and requires tight regulation. MIS may play a role in gonadal function and development. Our laboratory has shown that an important role for ovarian MIS is to inhibit oocyte meiosis, perhaps providing maximal oocyte maturation prior to selection for ovulation and subsequent fertilization. Furthermore, Vigier et al. (Development 100:43-55) have recently obtained evidence that MIS may influence testicular differentiation, coincident with inhibition of aromatase activity. Current structure-function studies demonstrate that MIS, like other growth regulators in its protein family, requires proteolytic cleavage to exhibit full biological activity. MIS can be inhibited by epidermal growth factor. This antagonism, which is common to all MIS functions so far investigated, is associated with inhibition of EGF receptor autophosphorylation. We have provided evidence that bovine MIS can inhibit female reproductive tract tumors arising in adults.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013735 Testicular Hormones Hormones produced in the testis. Hormones, Testicular
D054304 Anti-Mullerian Hormone A glycoprotein that causes regression of MULLERIAN DUCTS. It is produced by SERTOLI CELLS of the TESTES. In the absence of this hormone, the Mullerian ducts develop into structures of the female reproductive tract. In males, defects of this hormone result in persistent Mullerian duct, a form of MALE PSEUDOHERMAPHRODITISM. Mullerian-Inhibiting Hormone,Anti-Muellerian Hormone,Anti-Mullerian Factor,Antimullerian Hormone,Mullerian Inhibiting Hormone,Mullerian Inhibiting Substance,Mullerian Regression Factor,Mullerian-Inhibiting Factor,Mullerian-Inhibitory Substance,Anti Muellerian Hormone,Anti Mullerian Factor,Anti Mullerian Hormone,Hormone, Anti-Muellerian,Mullerian Inhibiting Factor,Mullerian Inhibitory Substance

Related Publications

P K Donahoe
January 2000, Recent progress in hormone research,
P K Donahoe
June 1995, The Journal of pathology,
P K Donahoe
October 1993, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
P K Donahoe
January 1988, Anticancer research,
P K Donahoe
April 2007, Human reproduction (Oxford, England),
P K Donahoe
January 1994, Current topics in developmental biology,
Copied contents to your clipboard!