Binding of ATP and messenger RNA by the beta-subunit of eukaryotic initiation factor 2. 1992

R Gonsky, and D Itamar, and R Harary, and R Kaempfer
Department of Molecular Virology, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

In addition to forming a ternary complex with Met-tRNA(f) and GTP, eukaryotic initiation factor 2 (eIF-2) recognizes a specific site in mRNA molecules. Both binding activities are regulated by ATP, which itself binds tightly and specifically to eIF-2. Denaturation of eIF-2 with urea leads to complete loss of Met-tRNA(f) binding activity, while mRNA binding activity is stable. Hence, distinct conformational features in eIF-2 are required for ternary complex formation and for binding of mRNA. Chromatography of eIF-2 over ATP-agarose, in denaturing conditions that induce polypeptide subunit dissociation, results in selective retention of the beta-subunit of eIF-2. Isolated beta-subunit is capable of binding mRNA as well as ATP. Cibacron blue 3G-A binds tightly to eIF-2 and inhibits the binding of mRNA. This inhibition is relieved upon addition of ATP, showing that Cibacron blue 3G-A competes with ATP for eIF-2. eIF-2 beta subunit, active in binding of mRNA, is recovered upon chromatography of eIF-2 in denaturing conditions over matrix-bound Cibacron blue 3G-A. These results show that the ability of eIF-2 to bind mRNA and its ability to bind ATP are both lodged within remarkably stable domains of its beta-subunit. During initiation of protein synthesis, the eIF-2 beta subunit may thus interact with three ligands important for translational control: Met-tRNA(f), mRNA and ATP.

UI MeSH Term Description Entries
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012358 RNA, Transfer, Met A transfer RNA which is specific for carrying methionine to sites on the ribosomes. During initiation of protein synthesis, tRNA(f)Met in prokaryotic cells and tRNA(i)Met in eukaryotic cells binds to the start codon (CODON, INITIATOR). Initiator tRNA,Methionine-Specific tRNA,Methionine-Specific tRNAm,RNA, Transfer, Initiator,Transfer RNA, Met,tRNA(f)Met,tRNA(i)Met,tRNA(m)Met,tRNAMet,tRNA(Met),Met Transfer RNA,Methionine Specific tRNA,Methionine Specific tRNAm,RNA, Met Transfer,tRNA, Initiator,tRNA, Methionine-Specific,tRNAm, Methionine-Specific
D014227 Triazines Heterocyclic rings containing three nitrogen atoms, commonly in 1,2,4 or 1,3,5 or 2,4,6 formats. Some are used as HERBICIDES. Triazine,Benzotriazines
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D015852 Eukaryotic Initiation Factor-2 Eukaryotic initiation factor of protein synthesis. In higher eukaryotes the factor consists of three subunits: alpha, beta, and gamma. As initiation proceeds, eIF-2 forms a ternary complex with Met-tRNAi and GTP. EIF-2,Peptide Initiation Factor EIF-2,EIF-2 alpha,EIF-2 beta,EIF-2 gamma,EIF-2alpha,EIF-2beta,EIF-2gamma,EIF2,Eukaryotic Initiation Factor-2, alpha Subunit,Eukaryotic Initiation Factor-2, beta Subunit,Eukaryotic Initiation Factor-2, gamma Subunit,Eukaryotic Peptide Initiation Factor-2,EIF 2,EIF 2 alpha,EIF 2 beta,EIF 2 gamma,EIF 2alpha,EIF 2beta,EIF 2gamma,Eukaryotic Initiation Factor 2,Eukaryotic Initiation Factor 2, alpha Subunit,Eukaryotic Initiation Factor 2, beta Subunit,Eukaryotic Initiation Factor 2, gamma Subunit,Eukaryotic Peptide Initiation Factor 2,Initiation Factor-2, Eukaryotic,Peptide Initiation Factor EIF 2

Related Publications

R Gonsky, and D Itamar, and R Harary, and R Kaempfer
January 1982, The Journal of biological chemistry,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
November 1979, Biochemical and biophysical research communications,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
June 1985, The Journal of biological chemistry,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
September 1986, The Journal of biological chemistry,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
January 1979, Methods in enzymology,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
January 1978, Proceedings of the National Academy of Sciences of the United States of America,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
March 1998, Proceedings of the National Academy of Sciences of the United States of America,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
January 1979, Archives of biochemistry and biophysics,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
July 1981, Proceedings of the National Academy of Sciences of the United States of America,
R Gonsky, and D Itamar, and R Harary, and R Kaempfer
September 1991, The Journal of biological chemistry,
Copied contents to your clipboard!