Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. 2006

Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
Department of Pathology, 4162 Graves Hall, 333 West 10th Avenue, The Ohio State University, Columbus, OH 43210, USA. trgovcich-1@medctr.osu.edu

The human cytomegalovirus tegument protein pp71 is the product of the UL82 gene. Roles for pp71 in stimulating gene transcription, increasing infectivity of viral DNA, and the degradation of retinoblastoma family proteins have been described. Here we report a novel function for pp71 in limiting accumulation of cell surface major histocompatibility complex (MHC) class I complexes. MHC molecules were analyzed in glioblastoma cells exposed to a replication-defective adenovirus expressing UL82 (Adpp71) or after transient transfection of the UL82 gene. Accumulation of cell surface MHC class I levels diminished in a specific and dose-dependent manner after exposure to Adpp71 but not after exposure to an adenovirus expressing beta-galactosidase (Adbeta gal). UL82 expression did not interfere with accumulation of either MHC class I heavy-chain transcript or protein, nor did UL82 expression correlate with markers of apoptosis. Rather, UL82 expression correlated with an increased proportion of MHC class I molecules exhibiting sensitivity to endoglycosidase H treatment. Finally, we show that, in cells infected with recombinant virus strain missing all of the unique short region MHC class I evasion genes, disruption of UL82 expression by short, interfering RNAs led to increased accumulation of cell surface MHC class I complexes. These findings support a novel role for HCMV pp71 in disruption of the MHC class I antigen presentation pathway.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015395 Histocompatibility Antigens Class I Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells. Class I Antigen,Class I Antigens,Class I Histocompatibility Antigen,Class I MHC Protein,Class I Major Histocompatibility Antigen,MHC Class I Molecule,MHC-I Peptide,Class I Histocompatibility Antigens,Class I Human Antigens,Class I MHC Proteins,Class I Major Histocompatibility Antigens,Class I Major Histocompatibility Molecules,Human Class I Antigens,MHC Class I Molecules,MHC-I Molecules,MHC-I Peptides,Antigen, Class I,Antigens, Class I,I Antigen, Class,MHC I Molecules,MHC I Peptide,MHC I Peptides,Molecules, MHC-I,Peptide, MHC-I,Peptides, MHC-I
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D017951 Antigen Presentation The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989) Antigen Processing,Antigen Presentations,Antigen Processings
D034622 RNA Interference A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process. Gene Silencing, Post-Transcriptional,Post-Transcriptional Gene Silencing,Co-Suppression,Cosuppression,Posttranscriptional Gene Silencing,RNA Silencing,RNAi,Co Suppression,Gene Silencing, Post Transcriptional,Gene Silencing, Posttranscriptional,Gene Silencings, Posttranscriptional,Interference, RNA,Post Transcriptional Gene Silencing,Post-Transcriptional Gene Silencings,Silencing, Post-Transcriptional Gene

Related Publications

Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
January 2005, Viral immunology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
April 2011, Journal of virology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
May 2013, Journal of virology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
April 1997, Journal of virology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
January 1994, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
January 2003, The Journal of general virology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
July 2002, Journal of virology,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
February 1985, Cell,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
November 1991, Transplantation,
Joanne Trgovcich, and Colleen Cebulla, and Pete Zimmerman, and Daniel D Sedmak
February 2009, Journal of virology,
Copied contents to your clipboard!