Externally disposed plasma membrane proteins. II. Metabolic fate of iodinated polypeptides of mouse L cells. 1975

A L Hubbard, and Z A Cohn

The fate of the L-cell plasma membrane proteins labeled by enzymatic iodination was studied. The disappearance of label from growing cells exhibits a biphasic behavior, with 5-20% lost rapidly (t1/2 similar to 2 h) and 80-90% lost relatively slowly (t1/2 similar to 25-33 h). The loss is temperature dependent and serum independent, and is accompanied by the appearance of 51% (125-I)monoiodotyrosine (MIT) in the medium by 47 h. A variable amount (1-14%) of acid-insoluble label can be recovered in the medium over 47 h. Sodium dodecyl sulfate (SDS)-polyacrylamide gel labeling patterns from cells cultured up to 48 h after iodination reveal no change in the relative distribution of radioactivity, indicating similar rates of degradation for most of the labeled membrane proteins. The fate of the labeled membrane proteins was studied at various times after phagocytosis of nondigestible polystyrene particles. Iodinated L cells phagocytose sufficient 1.1 mum latex beads in 60 min to interiorize 15-30% of the total cell surface area. Electron microscope autoradiography confirmed that labeled membrane is internalized during phagocytosis. The latex-containing phagocytic vacuoles are isolated by flotation in a discontinuous sucrose gradient. 15-30% of the total incorporated label and a comparable percentage of alkaline phosphodiesterase I activity (PDase, a plasma membrane enzyme marker) are recovered in the phagocytic vacuole fraction. Lysosomal enzyme activities are found in the latex vacuole fraction, indicating formation of phagolysosomes. SDS gel analyses reveal that all of the radioactive proteins initially present on the intact cell's surface are interiorized to the same relative extent. Incorporated label and PDase activity disappear much more rapidly from the phagolysosomes than from the whole cell. In the phagolysosomal compartment, greater than 70% of the TCA-precipitable labeled proteins and all of the PDase activity are lost rapidly (t1/2 equals 1-2 h) but similar 30% of the labeled proteins in this compartment are degraded with a 17-20 h half-life. The slowly degraded label is due to specific long-lived polypeptides, of 85,000 and 8,000-15,000 daltons, which remain in the phagolysosomal membrane up to 40 h after phagocytosis.

UI MeSH Term Description Entries
D007454 Iodides Inorganic binary compounds of iodine or the I- ion. Iodide
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D007840 Latex A milky, product excreted from the latex canals of a variety of plant species that contain cauotchouc. Latex is composed of 25-35% caoutchouc, 60-75% water, 2% protein, 2% resin, 1.5% sugar & 1% ash. RUBBER is made by the removal of water from latex.(From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed). Hevein proteins are responsible for LATEX HYPERSENSITIVITY. Latexes are used as inert vehicles to carry antibodies or antigens in LATEX FIXATION TESTS. Latices,Latice
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides

Related Publications

A L Hubbard, and Z A Cohn
February 1980, Brain research,
A L Hubbard, and Z A Cohn
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
A L Hubbard, and Z A Cohn
August 1983, Molecular and biochemical parasitology,
A L Hubbard, and Z A Cohn
May 1981, Science (New York, N.Y.),
A L Hubbard, and Z A Cohn
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
A L Hubbard, and Z A Cohn
September 1990, Virology,
Copied contents to your clipboard!