Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. 2005

Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.

The hypocretins (also know as orexins) are two neuropeptides now commonly described as critical components for maintaining and regulating the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. New data indicate that the corticotrophin-releasing factor (CRF) peptidergic system directly innervates hypocretin-expressing neurons. CRF depolarizes hypocretin neurons, and this effect is blocked by a CRF-R1 antagonist. Furthermore, activation of hypocretinergic neurons by stress is impaired in CRF-R1 knockout mice. These data suggest that CRF-R1 receptor mediates the stress-induced activation of the hypocretinergic system. A significant amount of evidence also indicates that hypocretin cells connect reciprocally to the CRF system. We propose that upon stressor stimuli, CRF activates the hypocretin system, which relays these signals to brain stem nuclei involved in the modulation of arousal as well as to the extended amygdala, a structure involved in the negative motivational state that drives addiction.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D000068797 Orexins Neuropeptide hormones that play a role in regulating a variety of behavioral and physiological processes in response to motivational stimuli. Hypocretin,Orexin,Hypocretin-1,Hypocretin-2,Hypocretins,Orexin-A,Orexin-B,Hypocretin 1,Hypocretin 2,Orexin A,Orexin B
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001143 Arousal Cortical vigilance or readiness of tone, presumed to be in response to sensory stimulation via the reticular activating system. Vigilance, Cortical,Arousals,Cortical Vigilance
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular

Related Publications

Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
February 2010, Brain research,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
December 1979, Pharmacological reviews,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
December 2010, Brain research,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
October 1982, Life sciences,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
March 2021, The international journal of neuropsychopharmacology,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
December 2005, Stress (Amsterdam, Netherlands),
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
January 1991, Journal of psychopharmacology (Oxford, England),
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
March 2008, Physiology & behavior,
Raphaëlle Winsky-Sommerer, and Benjamin Boutrel, and Luis de Lecea
March 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!