Role of DNA repair in malignant neoplastic transformation of human mammary epithelial cells in culture. 1992

K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.

Epithelial cells derived from normal human mammary tissue were examined for capacity to repair radiation-induced chromatin DNA damage. Repair capacity was estimated by quantifying chromatid aberrations in metaphase cells arrested 0.5-1.5 h after X-irradiation during G2. The parental cells at passage 12 had 19 chromatid breaks and 16 gaps per 100 metaphase cells, representing efficient repair. Of two continuous cell lines, derived after benzo[a]pyrene treatment, A1 maintained the efficient repair phenotype through passage 50, while a subline of A1 developed the repair-deficient phenotype characterized by a 3- to 5-fold higher frequency of chromatid breaks or gaps. This line was transformed to tumorigenic cells by HaMSV and SV40 T antigen. The second continuous line B5 and derivatives had 102-165 chromatid breaks and 87-134 gaps per 100 metaphases (deficient repair phenotype). This line was transformed to tumorigenic cells by KiMSV. As reported previously for human epidermal keratinocytes, acquisition of this repair-deficient phenotype appears to be an early requisite step in the malignant neoplastic transformation of human cells in culture.

UI MeSH Term Description Entries
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
January 1988, Cancer treatment and research,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
January 2003, Methods in molecular biology (Clifton, N.J.),
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
November 1990, Cancer letters,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
January 1994, Cancer treatment and research,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
January 1983, Progress in clinical and biological research,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
January 1980, Annals of the New York Academy of Sciences,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
July 1979, Journal of the National Cancer Institute,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
August 1982, International journal of cancer,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
October 2000, Journal of mammary gland biology and neoplasia,
K K Sanford, and F M Price, and J S Rhim, and M R Stampfer, and R Parshad
November 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!