Phacidiopycnis washingtonensis--a new species associated with pome fruits from Washington State. 2005

C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center 1100 North Western Avenue, Wenatchee, Washington 98801, USA. clxiao@wsu.edu

A new species of Phacidiopycnis associated with pome fruits is described. The fungus causes fruit rot on apples during storage and is associated with a twig dieback and canker disease of crabapple trees and dead twigs of pear trees. To characterize the biology of the fungus and compare it with Ph. piri, the type species of the genus, effects of nine media and light on mycelial growth and pycnidial production, mycelial growth in response to temperature and mode of conidial germination in response to nutrient were determined. Apple-juice agar, pear-juice agar, prune-juice agar, potato-dextrose agar (PDA) and malt-extract agar, Czapek-Dox agar and oatmeal agar (OMA) favored mycelial growth. Cornmeal agar (CMA) did not favor mycelial growth. Light effect on pycnidial formation was medium dependent. Abundant pycnidia with mature conidia formed in 14 d old PDA and OMA cultures at 20 C, regardless of light, whereas none or very few pycnidia formed on other media in the dark. Fluorescent light stimulated formation of pycnidia except on CMA. The fungus grew at -3-25 C, with optimum growth at 15-20 C. Conidia germinated either by forming germ tubes or less often by budding. Budding of conidia occurred in 1 and 10% pear-juice solutions but not in 100% pear-juice solution. Six isolates of Ph. washingtonensis from different species of pome fruits had identical ITS sequences. The sizes of the ITS region were the same for both Ph. washingtonensis and Ph. piri, and four polymorphic nucleotide sites were found in the ITS region between Ph. washingtonensis and Ph. piri. The similarity in ITS sequences between these two taxa is confirmatory evidence for the erection of the new species of Phacidiopycnis associated with pome fruits we describe here.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010781 Photography Method of making images on a sensitized surface by exposure to light or other radiant energy. Photographies
D010784 Photomicrography Photography of objects viewed under a microscope using ordinary photographic methods. Photomicrographies
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D001203 Ascomycota A phylum of fungi which have cross-walls or septa in the mycelium. The perfect state is characterized by the formation of a saclike cell (ascus) containing ascospores. Most pathogenic fungi with a known perfect state belong to this phylum. Ascomycetes,Cochliobolus,Sclerotinia,Ascomycete,Ascomycotas,Sclerotinias
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
November 2006, Plant disease,
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
April 2004, Plant disease,
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
March 2018, Plant disease,
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
April 1914, Science (New York, N.Y.),
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
January 1971, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftliche Abt.: Allgemeine, landwirtschaftliche und technische Mikrobiologie,
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
January 2017, PhytoKeys,
C L Xiao, and J D Rogers, and Y K Kim, and Q Liu
August 1993, Annals of internal medicine,
Copied contents to your clipboard!