The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. 2006

Laura L Schulz, and Jessica K Tyler
Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.

The packaging of the eukaryotic genome into chromatin is likely to regulate all processes that occur on the DNA template. The assembly and disassembly of chromatin structures from histone proteins and DNA are mediated by histone chaperones, including the histone H3/H4 chaperone anti-silencing function 1 (ASF1). To address the function of ASF1 in metazoan cells, we used RNA interference-mediated knockdown of Drosophila melanogaster ASF1 (dASF1). Cells lacking dASF1 accumulate in S phase of the cell cycle as determined by flow cytometry analysis of DNA content and quantitation of the proportion of cells with replication foci. In agreement, bromodeoxyuridine (BrdU) pulse-chase analysis demonstrates that the absence of ASF1 leads to delayed progression through S-phase. Furthermore, the absence of ASF1 leads to a reduced ability to incorporate the nucleoside analog BrdU, indicating that ASF1 is required for efficient DNA replication. We have also found that dASF1 colocalizes with DNA replication foci throughout S phase by immunofluorescence analysis and that these dASF1 foci are disrupted upon inhibition of DNA replication by treatment of cells with hydroxyurea. As such, these results demonstrate that dASF1 is present at active, but not stalled, replication forks. We propose that dASF1 has a direct role in modifying chromatin structure during DNA replication and that this function of dASF1 is important for the processivity of the replication machinery.

UI MeSH Term Description Entries
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D006918 Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. Hydroxycarbamid,Hydrea,Oncocarbide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016196 S Phase Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome. S Period,Period, S,Periods, S,Phase, S,Phases, S,S Periods,S Phases
D018390 Gene Targeting The integration of exogenous DNA into the genome of an organism at sites where its expression can be suitably controlled. This integration occurs as a result of homologous recombination. Gene Targetings,Targeting, Gene,Targetings, Gene
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins

Related Publications

Laura L Schulz, and Jessica K Tyler
October 2007, Developmental cell,
Laura L Schulz, and Jessica K Tyler
October 2011, Genes to cells : devoted to molecular & cellular mechanisms,
Laura L Schulz, and Jessica K Tyler
March 2014, Proceedings of the National Academy of Sciences of the United States of America,
Laura L Schulz, and Jessica K Tyler
March 2014, Nature communications,
Laura L Schulz, and Jessica K Tyler
April 2007, Chromosoma,
Laura L Schulz, and Jessica K Tyler
February 2024, Molecular cell,
Laura L Schulz, and Jessica K Tyler
January 2012, Proceedings of the National Academy of Sciences of the United States of America,
Laura L Schulz, and Jessica K Tyler
November 2006, Cell,
Copied contents to your clipboard!