Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity. 2006

Jeffrey J DeStefano, and Jason V Cristofaro
Department of Cell Biology and Molecular Genetics, University of Maryland, Building 231, College Park, MD 20742, USA. jdestefa@umd.edu

A SELEX (systematic evolution of ligands by exponential enrichment)-based approach was developed to determine whether HIV-RT showed preference for particular primer-template sequences. A 70 nt duplex DNA was designed with 20 nt fixed flanking sequences at the 3' and 5' ends and a randomized 30 nt internal sequence. The fixed sequence at the 5' end contained a BbsI site six bases removed from the randomized region. BbsI cuts downstream of its recognition site generating four base 5' overhangs with recessed 3' termini. Cleavage produced a 50 nt template and 46 nt primer with the 3' terminus within the randomized region. HIV-RT was incubated with this substrate and material that bound RT was isolated by gel-shift. The recovered material was treated to regenerate the BbsI site, amplified by PCR, cleaved with BbsI and selected with HIV-RT again. This was repeated for 12 rounds. Material from round 12 bound approximately 10-fold more tightly than starting material. All selected round 12 primer-templates had similar sequence configuration with a 6-8 base G run at the 3' primer terminus, similar to the HIV polypurine tract. Further modifications indicate that the Gs were necessary and sufficient for strong binding.

UI MeSH Term Description Entries
D006147 Guanine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D052156 SELEX Aptamer Technique A method of generating a large library of randomized nucleotides and selecting NUCLEOTIDE APTAMERS by iterative rounds of in vitro selection. A modified procedure substitutes AMINO ACIDS in place of NUCLEOTIDES to make PEPTIDE APTAMERS. Systematic Evolution of Ligands by Exponential Enrichment,Aptamer Technique, SELEX,Aptamer Techniques, SELEX,SELEX Aptamer Techniques,Technique, SELEX Aptamer,Techniques, SELEX Aptamer
D052157 Aptamers, Nucleotide Nucleotide sequences, generated by iterative rounds of SELEX APTAMER TECHNIQUE, that bind to a target molecule specifically and with high affinity. DNA Aptamer,DNA Aptamers,RNA Aptamers,Rna Aptamer,Nucleotide Aptamers,Oligonucleotide Ligands, DNA,Oligonucleotide Ligands, RNA,Aptamer, DNA,Aptamer, Rna,Aptamers, DNA,Aptamers, RNA,DNA Oligonucleotide Ligands,RNA Oligonucleotide Ligands
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse

Related Publications

Jeffrey J DeStefano, and Jason V Cristofaro
April 1991, The Journal of biological chemistry,
Jeffrey J DeStefano, and Jason V Cristofaro
July 1991, The Journal of biological chemistry,
Jeffrey J DeStefano, and Jason V Cristofaro
November 1992, FEBS letters,
Jeffrey J DeStefano, and Jason V Cristofaro
September 1994, The Journal of biological chemistry,
Jeffrey J DeStefano, and Jason V Cristofaro
November 1995, European journal of biochemistry,
Jeffrey J DeStefano, and Jason V Cristofaro
July 1995, Biochemistry,
Copied contents to your clipboard!