Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. 2006

Jason M Christie, and Craig E Jahr
Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA. christij@ohsu.edu

Whether an individual synapse releases single or multiple vesicles of transmitter per action potential is contentious and probably depends on the type of synapse. One possibility is that multivesicular release (MVR) is determined by the instantaneous release probability (Pr) and therefore can be controlled by activity-dependent changes in Pr. We investigated transmitter release across a range of Pr at synapses between Schaffer collaterals (SCs) and CA1 pyramidal cells in acute hippocampal slices using patch-clamp recordings. The size of the synaptic glutamate transient was estimated by the degree of inhibition of AMPA receptor EPSCs with the rapidly equilibrating antagonist gamma-D-glutamylglycine. The glutamate transient sensed by AMPA receptors depended on Pr but not spillover, indicating that multiple vesicles are essentially simultaneously released from the same presynaptic active zone. Consistent with an enhanced glutamate transient, increasing Pr prolonged NMDA receptor EPSCs when glutamate transporters were inhibited. We suggest that MVR occurs at SC-CA1 synapses when Pr is elevated by facilitation and that MVR may be a phenomenon common to many synapses throughout the CNS.

UI MeSH Term Description Entries
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018691 Excitatory Amino Acid Antagonists Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists. Amino Acids, Excitatory, Antagonists,Excitatory Amino Acid Antagonist,Glutamate Antagonist,Glutamate Antagonists,Glutamate Receptor Antagonist,Amino Acid Antagonists, Excitatory,Antagonists, Excitatory Amino Acid,EAA Antagonists,Glutamate Receptor Antagonists,Antagonist, Glutamate,Antagonist, Glutamate Receptor,Antagonists, EAA,Antagonists, Glutamate,Antagonists, Glutamate Receptor,Receptor Antagonist, Glutamate,Receptor Antagonists, Glutamate
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Jason M Christie, and Craig E Jahr
May 2012, European journal of pharmacology,
Jason M Christie, and Craig E Jahr
December 2009, Learning & memory (Cold Spring Harbor, N.Y.),
Jason M Christie, and Craig E Jahr
February 2008, Nature neuroscience,
Jason M Christie, and Craig E Jahr
April 2007, Neuroscience letters,
Jason M Christie, and Craig E Jahr
April 2024, Molecular brain,
Copied contents to your clipboard!