Nanoparticle conjugation increases protein partitioning in aqueous two-phase systems. 2006

M Scott Long, and Christine D Keating
Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

We describe the effect of bioconjugation to colloidal Au nanoparticles on protein partitioning in poly(ethylene glycol) (PEG)/dextran aqueous two-phase systems (ATPS). Horseradish peroxidase (HRP) was conjugated to colloidal Au nanoparticles by direct adsorption. Although HRP alone had very little phase preference, HRP/Au nanoparticle conjugates typically partitioned to the PEG-rich phase, up to a factor of 150:1 for conjugates of 15-nm colloidal Au. Other protein/Au nanoparticle conjugates exhibited partitioning of greater than 2000:1 to the dextran-rich phase, as compared with approximately 5:1 for the free protein. The degree of partitioning was dependent on polymer concentration and molecular weight, nanoparticle diameter, and in some instances, nanoparticle concentration in the ATPS. The substantial improvements in protein partitioning achievable by conjugation to Au nanoparticles appear to result largely from increased surface area of the conjugates and require neither chemical modification of the proteins or polymers with affinity ligands, increased polymer concentrations, nor addition of high concentrations of salts. Adsorption to colloidal particles thus provides an attractive route for increased partitioning of enzymes and other proteins in ATPS. Furthermore, these results point to ATPS partitioning as a powerful means of purification for biomolecule/nanoparticle conjugates, which are increasingly used in diagnostics and materials applications.

UI MeSH Term Description Entries
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002468 Cell Physiological Phenomena Cellular processes, properties, and characteristics. Cell Physiological Processes,Cell Physiology,Cell Physiological Phenomenon,Cell Physiological Process,Physiology, Cell,Phenomena, Cell Physiological,Phenomenon, Cell Physiological,Physiological Process, Cell,Physiological Processes, Cell,Process, Cell Physiological,Processes, Cell Physiological
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D005470 Fluorometry An analytical method for detecting and measuring FLUORESCENCE in compounds or targets such as cells, proteins, or nucleotides, or targets previously labeled with FLUORESCENCE AGENTS. Fluorimetry,Fluorometric Analysis,Analysis, Fluorometric
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013205 Staphylococcal Protein A A protein present in the cell wall of most Staphylococcus aureus strains. The protein selectively binds to the Fc region of human normal and myeloma-derived IMMUNOGLOBULIN G. It elicits antibody activity and may cause hypersensitivity reactions due to histamine release; has also been used as cell surface antigen marker and in the clinical assessment of B lymphocyte function. Protein A,Protein A, Staphylococcal

Related Publications

M Scott Long, and Christine D Keating
August 1989, Biotechnology and bioengineering,
M Scott Long, and Christine D Keating
January 2012, Methods in molecular biology (Clifton, N.J.),
M Scott Long, and Christine D Keating
April 1993, Journal of biotechnology,
M Scott Long, and Christine D Keating
January 1990, Bioseparation,
M Scott Long, and Christine D Keating
July 2013, Applied microbiology and biotechnology,
M Scott Long, and Christine D Keating
August 1998, Biotechnology and bioengineering,
M Scott Long, and Christine D Keating
May 1996, Journal of chromatography. B, Biomedical applications,
M Scott Long, and Christine D Keating
January 2007, Advances in biochemical engineering/biotechnology,
M Scott Long, and Christine D Keating
June 1986, Analytical biochemistry,
M Scott Long, and Christine D Keating
February 1995, Bioseparation,
Copied contents to your clipboard!