Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. 2006

A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
Reproduction-Physiology and Biotechnology, Group of Reproduction-Biogenesis, University of Antioquia, Medellin, Colombia.

Contents Bovine oocytes and embryos produced in vitro were studied to determine the mitochondrial pattern of distribution, segregation and activity using DIOC 6 and Jc-1 fluorescence. The highest fluorescence level observed in mature oocytes was taken as 100% activity and six activity levels were estimated as follows: (1) 0%, (2) 1-15%, (3) 16-30%, (4) 31-50%, (5) 51-75% and (6) 76-100%. Three patterns of mitochondrial distribution were found: (1) diffused throughout the cytoplasm in oocytes and embryos, (2) pericytoplasmic in oocytes and embryos, and (3) perinuclear only in embryos. The segregation of mitochondria in blastomeres showed two distinct patterns: (1) symmetrical with an even mitochondrial population, and (2) asymmetrical with different numbers of mitochondria in each blastomere. In immature oocytes, mitochondrial activity was very low and the distribution was diffuse or negligible, while in mature oocytes the activity was high and the distribution was diffuse or pericytoplasmic. Competent embryos up to the 16-cell stage showed intermediate levels of activity (16-50%) but activity decreased thereafter up to the blastocyst stage. Non-competent embryos showed low levels of activity (1-15%) at all stages. These results suggest that mitochondria might play an important role during early development and that a minimum threshold of activity regulates the potential competence for reaching the blastocyst stage.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005307 Fertilization in Vitro An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro. Test-Tube Fertilization,Fertilizations in Vitro,In Vitro Fertilization,Test-Tube Babies,Babies, Test-Tube,Baby, Test-Tube,Fertilization, Test-Tube,Fertilizations, Test-Tube,In Vitro Fertilizations,Test Tube Babies,Test Tube Fertilization,Test-Tube Baby,Test-Tube Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046149 Embryo Culture Techniques The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS. Blastocyst Culture Techniques,Blastocyst Culture Technique,Culture Technique, Blastocyst,Culture Technique, Embryo,Culture Techniques, Blastocyst,Culture Techniques, Embryo,Embryo Culture Technique
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development

Related Publications

A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
November 2004, Molecular reproduction and development,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
April 2009, Animal : an international journal of animal bioscience,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
July 2000, Human reproduction (Oxford, England),
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
February 1996, Molecular reproduction and development,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
July 1999, Journal of reproduction and fertility,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
January 2011, Theriogenology,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
August 1993, Journal of assisted reproduction and genetics,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
January 2018, Reproduction, fertility, and development,
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
July 2003, Reproduction (Cambridge, England),
A M Tarazona, and J I Rodríguez, and L F Restrepo, and M Olivera-Angel
October 1996, Molecular reproduction and development,
Copied contents to your clipboard!