NMR studies of pig low- and high-density serum lipoproteins. Molecular motions and morphology. 1975

E G Finer, and R Henry, and R B Leslie, and R N Robertson

1. NMR spectra of porcine high- and low density lipoproteins (d 1.120--1.210 and 1.019--1.070, respectively) and their extracted lipids were obtained as functions of temperature, frequency and solution viscosity, and from solutions to which paramagnetic species had been added. 2. About one-third of the N(CH3)3 groups in low-density lipoproteins are so immobile that they do not give a sharp resonance at any temperature up to 65 degrees C, unless the particles are disrupted with sodium dodecylsulphate. Most of the protein residues also undergo little segmental motion. 3. A marked restriction of motion of acyl chain terminal CH3 groups suggests that chain interdigitation occurs in low-density lipoprotein. Apart from this, there is a general ordering of the lipids without a decrease in the rate of rotation about bonds, suggesting that the protein organizes the lipids by controlling the molecular packing rather than by direct strong interactions. The lipids are more ordered in low-density than in high-density lipoprotein. 4. All phospholipids with mobile N(CH3)3 groups are at the particle surfaces, in patches separated by protein. In low-density lipoprotein the patches are raised proud of the protein, whereas in high-density lipoproteins the protein and lipid polar groups are coplanar. 5. The high-density lipoprotein results are consistent with literature models for the structure. The low-density lipoprotein results suggest a new model, which is basically a trilayer. The centre consists of a monolayer of phospholipid with tightly-packed polar groups in contact with a protein core. The outer monolayer of phospholipid contains the rest (most) of the protein; the central layer contains the neutral lipid (cholesterol esters and triglycerides), interdigitated into both the inner and outer monolayers. Unesterified cholesterol is distributed through all three layers.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E G Finer, and R Henry, and R B Leslie, and R N Robertson
June 1978, Journal of biochemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
June 1975, Journal of biochemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
April 1969, Biochimica et biophysica acta,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
June 1977, Journal of biochemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
June 1978, Journal of biochemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
November 1969, Proceedings of the National Academy of Sciences of the United States of America,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
May 1972, Journal of lipid research,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
January 1976, Comparative biochemistry and physiology. B, Comparative biochemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
August 1980, Clinical chemistry,
E G Finer, and R Henry, and R B Leslie, and R N Robertson
November 1982, Chemistry and physics of lipids,
Copied contents to your clipboard!